H-kernels in the D-join

In [8] it was introduced the concept of H-kernel, which generalizes the concepts of kernel and kernel by monochromatic paths. In this paper we prove necessary and sufficient conditions for the existence of H-kernels in the D-join of digraphs and consequently we will give a sufficient condition for D-join to be H-kernel perfect.

[1]  Gregory Gutin,et al.  Digraphs - theory, algorithms and applications , 2002 .

[2]  Jos'e Luis P'erez Garmendia On Weighted Tempered Moving Averages Processes , 2008 .

[3]  Hortensia Galeana-Sánchez,et al.  On kernels and semikernels of digraphs , 1984, Discret. Math..

[4]  Hortensia Galeana-Sánchez,et al.  On the structure of strong 3-quasi-transitive digraphs , 2010, Discret. Math..

[5]  Iwona Wloch,et al.  On kernels by monochromatic paths in D-join , 2011, Ars Comb..

[6]  Assia Benabdallah,et al.  Controllability to trajectories for some parabolic systems of three and two equations by one control force , 2013 .

[7]  Norbert Sauer,et al.  On monochromatic paths in edge-coloured digraphs , 1982, J. Comb. Theory, Ser. B.

[8]  E. Rowland Theory of Games and Economic Behavior , 1946, Nature.

[9]  Camino Balbuena,et al.  Finding small regular graphs of girths 6, 8 and 12 as subgraphs of cages , 2010, Discret. Math..

[10]  H. Galeana-Sánchez,et al.  Independent domination by monochromatic paths in arc coloured bipartite tournaments , 2009 .

[11]  S. M. Voronin,et al.  Extended Holonomy and Topological Invariance of Vanishing Holonomy Group , 2008 .

[13]  Sorin Micu,et al.  A spectral study of the boundary controllability of the linear 2-D wave equation in a rectangle , 2010, Asymptot. Anal..

[14]  Camino Balbuena,et al.  Constructions of bi-regular cages , 2009, Discret. Math..

[15]  R. E. Kent Robert E , 2005 .

[16]  Juan José Montellano-Ballesteros,et al.  On the Pseudoachromatic Index of the Complete Graph III , 2011, Graphs and Combinatorics.

[17]  Pierre Ille,et al.  Absorbing sets in arc-coloured tournaments , 2004, Discret. Math..

[18]  Bill Sands,et al.  A note on paths in edge-coloured tournaments , 1996, Ars Comb..

[19]  Frédéric Maffray,et al.  Some operations preserving the existence of kernels , 1999, Discret. Math..

[20]  Claudio Munoz,et al.  Singular limits for the bi-laplacian operator with exponential nonlinearity in $\R^4$ , 2007, 0709.2878.

[21]  Hortensia Galeana-Sánchez,et al.  A classification of arc-locally semicomplete digraphs , 2009, Electron. Notes Discret. Math..

[22]  Hortensia Galeana-Sánchez,et al.  Directed hypergraphs: A tool for researching digraphs and hypergraphs , 2009, Discuss. Math. Graph Theory.

[23]  Sergio Rajsbaum,et al.  New combinatorial topology bounds for renaming: the lower bound , 2010, Distributed Computing.

[24]  Iwona Wloch,et al.  On (k, l)-kernels in generalized products , 1997, Discret. Math..

[25]  Hortensia Galeana-Sánchez,et al.  Monochromatic paths and monochromatic sets of arcs in bipartite tournaments , 2009, Discuss. Math. Graph Theory.

[26]  Hortensia Galeana-Sánchez,et al.  On the existence of (k, l)-kernels in digraphs , 1990, Discret. Math..

[27]  Manuel González-Burgos,et al.  Controllability results for cascade systems of m coupled parabolic PDEs by one control force , 2010 .

[28]  M. Richardson,et al.  Solutions of Irreflexive Relations , 1953 .

[29]  Mika Olsen,et al.  A conjecture of Neumann-Lara on infinite families of r-dichromatic circulant tournaments , 2010, Discret. Math..

[30]  Juan José Montellano-Ballesteros,et al.  Absorbent sets and kernels by monochromatic directed paths in m-colored tournaments , 2008, Australas. J Comb..

[31]  M. Richardson Extension Theorems for Solutions of Irreflexive Relations. , 1953, Proceedings of the National Academy of Sciences of the United States of America.

[32]  Ilan A. Goldfeder (k, l)-kernels in quasi-transitive digraphs∗ , 2010 .

[33]  Hortensia Galeana-Sánchez,et al.  On the dichromatic number in kernel theory , 1998 .

[34]  Hortensia Galeana-Sánchez On monochromatic paths and monochromatic cycles in edge coloured tournaments , 1996, Discret. Math..

[35]  Iwona Wloch,et al.  On (k, l)-kernels in D-join of digraphs , 2007, Discuss. Math. Graph Theory.

[36]  Enrique Zuazua,et al.  Identification of the class of initial data for the insensitizing control of the heat equation , 2008 .

[37]  Eli Gafni,et al.  Recursion in Distributed Computing , 2010, SSS.

[38]  Jorge Alberto Achcar,et al.  Analysing weekly ozone averages in Mexico City using stochastic volatility models , 2007 .

[39]  Hortensia Galeana-Sánchez,et al.  Monochromatic paths and monochromatic sets of arcs in quasi-transitive digraphs , 2010, Discuss. Math. Graph Theory.

[40]  Hamamache Kheddouci,et al.  Grundy number of graphs , 2007, Discuss. Math. Graph Theory.

[41]  Jorge Alberto Achcar,et al.  Some non-homogeneous Poisson models with multiple change-points to study the behaviour of the number of ozone exceedances in Mexico City , 2007 .

[42]  W. Edwin Clark,et al.  Inequality Related to Vizing's Conjecture , 2000, Electron. J. Comb..

[43]  Manuel González-Burgos,et al.  Some results on controllability for linear and nonlinear heat equations in unbounded domains , 2007, Advances in Differential Equations.

[44]  Hortensia Galeana-Sánchez,et al.  Kernels in edge coloured line digraph , 1998, Discuss. Math. Graph Theory.

[45]  Juan José Montellano-Ballesteros,et al.  Kernels by Monochromatic Directed Paths In m-Colored Digraphs With Quasi-Transitive Chromatic Classes , 2012, Ars Comb..

[46]  Amaury Lambert,et al.  Proof(s) of the Lamperti representation of Continuous-State Branching Processes , 2008, 0802.2693.

[47]  Mexico On the asymptotic behaviour of increasing self-similar Markov processes , 2009 .

[48]  Filomena Pacella,et al.  Multiple solutions to the pure critical exponent problem in domains with a hole of arbitrary size , 2008 .

[49]  Václav Linek,et al.  Reachability problems in edge-colored digraphs , 2007, Discret. Math..

[50]  Magdalena Kucharska On (k, l)-Kernels of Orientations of Special Graphs , 2001, Ars Comb..

[51]  Hortensia Galeana-Sánchez,et al.  Monochromatic paths and monochromatic sets of arcs in 3-quasitransitive digraphs , 2009, Discuss. Math. Graph Theory.

[52]  Sergio Rajsbaum,et al.  New combinatorial topology bounds for renaming: The upper bound , 2012, JACM.

[53]  S. M. Voronin,et al.  On camacho-sad's theorem about the existence of a separatrix , 2010 .

[54]  Shen Minggang On monochromatic paths in m-coloured tournaments , 1988, J. Comb. Theory, Ser. B.

[55]  Pierre Duchet,et al.  A sufficient condition for a digraph to be kernel-perfect , 1987, J. Graph Theory.

[56]  Aviezri S. Fraenkel,et al.  Planar kernel and grundy with d≤3, dout≤2, din≤2 are NP-complete , 1981, Discret. Appl. Math..

[57]  Victor Hernandez-Urbina,et al.  Applying DNA computing to diagnose-and-interfere hepatic fibrosis , 2010, 2010 Sixth International Conference on Natural Computation.

[58]  Frank Harary,et al.  Graph Theory , 2016 .

[59]  Sergio Rajsbaum,et al.  New combinatorial topology upper and lower bounds for renaming , 2008, PODC '08.

[60]  Mika Olsen,et al.  Kernels by monochromatic paths in digraphs with covering number 2 , 2011, Discret. Math..

[61]  Piermarco Cannarsa,et al.  Controllability results for 1-d coupled degenerate parabolic equations , 2008 .