Effective shielding of ≲10 GeV cosmic rays from dense molecular clumps

[1]  Kinwah Wu,et al.  Observational Signatures of Cosmic-Ray Interactions in Molecular Clouds , 2021, The Astrophysical Journal.

[2]  Q. Yuan,et al.  A GeV-TeV particle component and the barrier of cosmic-ray sea in the Central Molecular Zone , 2020, Nature Communications.

[3]  George C. McGuire,et al.  Numerical Approach , 2020, Solar Chimney Power Plants: Numerical Investigations and Experimental Validation.

[4]  C. Lada,et al.  The Mass–Size Relation and the Constancy of GMC Surface Densities in the Milky Way , 2020, The Astrophysical Journal.

[5]  Y. Huang,et al.  A large catalogue of molecular clouds with accurate distances within 4 kpc of the Galactic disc , 2020, Monthly Notices of the Royal Astronomical Society.

[6]  F. Schinzel,et al.  Fermi Large Area Telescope Fourth Source Catalog , 2019, The Astrophysical Journal Supplement Series.

[7]  A. Goodman,et al.  A Large Catalog of Accurate Distances to Local Molecular Clouds: The Gaia DR2 Edition , 2019, The Astrophysical Journal.

[8]  K. Menten,et al.  Atlas of Cosmic-Ray-induced Astrochemistry , 2018, The Astrophysical Journal.

[9]  A. Strong,et al.  Gamma-Ray Emission from Molecular Clouds Generated by Penetrating Cosmic Rays , 2018, The Astrophysical Journal.

[10]  F. Aharonian,et al.  Massive stars as major factories of Galactic cosmic rays , 2018, Nature Astronomy.

[11]  Guangxing Li Scale-free gravitational collapse as the origin of ρ ∼ r -2 density profile - a possible role of turbulence in regulating gravitational collapse , 2018, 1803.03273.

[12]  P. Caselli,et al.  Penetration of Cosmic Rays into Dense Molecular Clouds: Role of Diffuse Envelopes , 2018, 1802.02612.

[13]  Guangxing Li,et al.  Quantifying the interplay between gravity and magnetic field in molecular clouds – a possible multiscale energy equipartition in NGC 6334 , 2017, 1711.02417.

[14]  F. Aharonian,et al.  Diffuse gamma-ray emission in the vicinity of young star cluster Westerlund 2 , 2017, 1710.02803.

[15]  D. Thompson,et al.  3FHL: The Third Catalog of Hard Fermi-LAT Sources , 2017, 1702.00664.

[16]  I. Stefanov,et al.  Density distribution function of a self-gravitating isothermal compressible turbulent fluid in the context of molecular clouds ensembles – II. Contribution of the turbulent term and the potential of the outer shells , 2017, Monthly Notices of the Royal Astronomical Society.

[17]  F. Aharonian,et al.  Diffuse gamma-ray emission near the young massive cluster NGC 3603 , 2016, 1612.02250.

[18]  Guangxing Li Criteria for gravitational instability and quasi-isolated gravitational collapse in turbulent medium , 2016, 1610.06577.

[19]  P. Myers,et al.  An Estimation of the Star Formation Rate in the Perseus Complex , 2016, 1704.07596.

[20]  K. Luhman,et al.  A CENSUS OF YOUNG STARS AND BROWN DWARFS IN IC 348 AND NGC 1333 , 2016, 1605.08907.

[21]  R. Klessen,et al.  Modelling the structure of molecular clouds – I. A multiscale energy equipartition , 2016, 1603.08441.

[22]  Guangxing Li,et al.  Probing the multiscale interplay between gravity and turbulence – power-law-like gravitational energy spectra of the Orion Complex , 2016, 1603.05417.

[23]  K. Menten,et al.  Observational constraints on star cluster formation theory - I. The mass-radius relation , 2015, 1512.00334.

[24]  K. Justtanont,et al.  Gas and dust in the star-forming region rho Oph A: The dust opacity exponent beta and the gas-to-dust mass ratio g2d , 2015, 1504.06277.

[25]  G. Morlino,et al.  Cosmic ray penetration in diffuse clouds , 2015, 1503.02435.

[26]  F. Aharonian,et al.  Parametrization of gamma-ray production cross-sections for pp interactions in a broad proton energy range from the kinematic threshold to PeV energies , 2014, 1406.7369.

[27]  Leiden,et al.  ATLASGAL — towards a complete sample of massive star forming clumps ⋆ , 2014, 1406.5078.

[28]  G. W. Pratt,et al.  Planck 2013 results. XI. All-sky model of thermal dust emission , 2013, 1312.1300.

[29]  F. Aharonian,et al.  Probing cosmic rays in nearby giant molecular clouds with the Fermi Large Area Telescope , 2013, 1303.7323.

[30]  K. Bechtol,et al.  SEARCH FOR SPATIALLY EXTENDED FERMI LARGE AREA TELESCOPE SOURCES USING TWO YEARS OF DATA , 2012, 1207.0027.

[31]  J. Chiang,et al.  A Cocoon of Freshly Accelerated Cosmic Rays Detected by Fermi in the Cygnus Superbubble , 2011, Science.

[32]  I. Cambridge,et al.  Why are most molecular clouds not gravitationally bound , 2011, 1101.3414.

[33]  C. B. Netterfield,et al.  Planck early results. XIX. All-sky temperature and dust optical depth from Planck and IRAS. Constraints on the "dark gas" in our Galaxy , 2011, 1101.2029.

[34]  F. Adams,et al.  HIGH-ENERGY COSMIC-RAY DIFFUSION IN MOLECULAR CLOUDS: A NUMERICAL APPROACH , 2010, 1010.0059.

[35]  P. Papadopoulos A COSMIC-RAY-DOMINATED INTERSTELLAR MEDIUM IN ULTRA LUMINOUS INFRARED GALAXIES: NEW INITIAL CONDITIONS FOR STAR FORMATION , 2010, 1009.1134.

[36]  S. W. Digel,et al.  GALPROP WebRun: An internet-based service for calculating galactic cosmic ray propagation and associated photon emissions , 2010, Comput. Phys. Commun..

[37]  S. Safi-Harb,et al.  CAVITY OF MOLECULAR GAS ASSOCIATED WITH SUPERNOVA REMNANT 3C 397 , 2010, 1001.2204.

[38]  T. Henning,et al.  Probing the evolution of molecular cloud structure: From quiescence to birth , 2009, 0911.5648.

[39]  F. Collaboration Fermi-LAT Discovery of Extended Gamma-ray Emission in the Direction of Supernova Remnant W51C , 2009, 0910.0908.

[40]  M. Norman,et al.  The Statistics of Supersonic Isothermal Turbulence , 2007, 0704.3851.

[41]  F. Aharonian,et al.  Gamma rays from molecular clouds , 2006, astro-ph/0610032.

[42]  A. Dalgarno The galactic cosmic ray ionization rate , 2006, Proceedings of the National Academy of Sciences.

[43]  H. Beuther,et al.  Molecular outflows in low- and high-mass star forming regions , 2006, astro-ph/0603071.

[44]  Isabelle A. Grenier,et al.  Unveiling Extensive Clouds of Dark Gas in the Solar Neighborhood , 2005, Science.

[45]  Tyler L. BourkeAlyssa A. Goodman Magnetic Fields in Molecular Clouds , 2004, astro-ph/0401281.

[46]  Iap,et al.  Transport of cosmic rays in chaotic magnetic fields , 2001, astro-ph/0109223.

[47]  D. Hartmann,et al.  The Milky Way in Molecular Clouds: A New Complete CO Survey , 2000, astro-ph/0009217.

[48]  Jonathan P. Williams,et al.  The Structure and Evolution of Molecular Clouds: from Clumps to Cores to the IMF , 1999, astro-ph/9902246.

[49]  Richard M. Crutcher,et al.  Magnetic Fields in Molecular Clouds: Observations Confront Theory , 1998 .

[50]  F. Walter,et al.  Star Formation in Taurus-Auriga: The High-Mass Stars , 1991 .

[51]  P. Thaddeus,et al.  A CO survey of the dark nebulae in Perseus, Taurus, and Auriga , 1987 .

[52]  C. Cesarsky,et al.  Cosmic ray penetration into molecular clouds , 1978 .

[53]  F. Aharonian,et al.  Diffuse γ-ray emission in the vicinity of young star cluster Westerlund 2 , 2018 .

[54]  F. Aharonian,et al.  Diffuse γ -ray emission near the young massive cluster NGC 3603 , 2017 .

[55]  K. Menten,et al.  Observational constraints on star cluster formation theory , 2016 .

[56]  D. Mardones The Initial Conditions for Star Formation , 2003 .