Regulation of HDM2 activity by the ribosomal protein L11.

[1]  Guillermina Lozano,et al.  Pirh2, a p53-Induced Ubiquitin-Protein Ligase, Promotes p53 Degradation , 2003, Cell.

[2]  Mei-Ling Kuo,et al.  Nucleolar Arf tumor suppressor inhibits ribosomal RNA processing. , 2003, Molecular cell.

[3]  Ruedi Aebersold,et al.  Quantitative proteomic analysis of Myc oncoprotein function , 2002, The EMBO journal.

[4]  D. Lane,et al.  Hypophosphorylation of Mdm2 Augments p53 Stability , 2002, Molecular and Cellular Biology.

[5]  Xin Lu,et al.  Live or let die: the cell's response to p53 , 2002, Nature Reviews Cancer.

[6]  Michael Berger,et al.  Tyrosine phosphorylation of Mdm2 by c‐Abl: implications for p53 regulation , 2002, The EMBO journal.

[7]  C. Korgaonkar,et al.  ARF Function Does Not Require p53 Stabilization or Mdm2 Relocalization , 2002, Molecular and Cellular Biology.

[8]  D. Wiederschain,et al.  Identification of p53 Sequence Elements That Are Required for MDM2-Mediated Nuclear Export , 2001, Molecular and Cellular Biology.

[9]  D. Woods,et al.  C-Terminal Ubiquitination of p53 Contributes to Nuclear Export , 2001, Molecular and Cellular Biology.

[10]  D. Leary,et al.  Regulation of ribosome biogenesis within the nucleolus , 2001, FEBS letters.

[11]  R. Kriwacki,et al.  Defining the molecular basis of Arf and Hdm2 interactions. , 2001, Journal of molecular biology.

[12]  H. O’Hagan,et al.  Induction of ser15 and lys382 modifications of p53 by blockage of transcription elongation , 2001, Oncogene.

[13]  D. Lane,et al.  Different effects of p14ARF on the levels of ubiquitinated p53 and Mdm2 in vivo , 2001, Oncogene.

[14]  Lester F. Lau,et al.  Evidence of p53-Dependent Cross-Talk between Ribosome Biogenesis and the Cell Cycle: Effects of Nucleolar Protein Bop1 on G1/S Transition , 2001, Molecular and Cellular Biology.

[15]  K. Vousden,et al.  Regulation and function of the p53 tumor suppressor protein. , 2001, Current opinion in cell biology.

[16]  S. Murayama,et al.  Characterization of a wheat cDNA encoding mitochondrial ribosomal protein L11: qualitative and quantitative tissue-specific differences in its expression , 2001, Molecular Genetics and Genomics.

[17]  S. T. Kim,et al.  ATM-dependent phosphorylation of Mdm2 on serine 395: role in p53 activation by DNA damage. , 2001, Genes & development.

[18]  G. Peters,et al.  Stabilization of p53 by p14ARF without relocation of MDM2 to the nucleolus , 2001, Nature Cell Biology.

[19]  M. Pincus,et al.  Jun NH2-Terminal Kinase Phosphorylation of p53 on Thr-81 Is Important for p53 Stabilization and Transcriptional Activities in Response to Stress , 2001, Molecular and Cellular Biology.

[20]  Sui Huang,et al.  Nucleolar Components Involved in Ribosome Biogenesis Cycle between the Nucleolus and Nucleoplasm in Interphase Cells , 2001, The Journal of cell biology.

[21]  W. Haldenwang,et al.  Loss of Ribosomal Protein L11 Blocks Stress Activation of the Bacillus subtilis Transcription Factor ςB , 2001, Journal of bacteriology.

[22]  M Schwab,et al.  N‐myc enhances the expression of a large set of genes functioning in ribosome biogenesis and protein synthesis , 2001, The EMBO journal.

[23]  D. Woods,et al.  Regulation of p53 function. , 2001, Experimental cell research.

[24]  K. Vousden,et al.  Minireviewp 53 : Death Star able to induce the defensive p 53 response to oncogene , 2000 .

[25]  C. Maki,et al.  The MDM2 RING-finger domain is required to promote p53 nuclear export , 2000, Nature Cell Biology.

[26]  K. Tsai,et al.  An intact HDM2 RING-finger domain is required for nuclear exclusion of p53 , 2000, Nature Cell Biology.

[27]  L. Comai,et al.  Repression of RNA Polymerase I Transcription by the Tumor Suppressor p53 , 2000, Molecular and Cellular Biology.

[28]  G. Mann,et al.  Two arginine rich domains in the p14ARF tumour suppressor mediate nucleolar localization , 2000, Oncogene.

[29]  D. Lane,et al.  An N-terminal p14ARF peptide blocks Mdm2-dependent ubiquitination in vitro and can activate p53 in vivo , 2000, Oncogene.

[30]  K. Vousden,et al.  Stress Signals Utilize Multiple Pathways To Stabilize p53 , 2000, Molecular and Cellular Biology.

[31]  M. Roussel,et al.  Cooperative Signals Governing ARF-Mdm2 Interaction and Nucleolar Localization of the Complex , 2000, Molecular and Cellular Biology.

[32]  G. Wahl,et al.  Differential requirement for p19ARF in the p53-dependent arrest induced by DNA damage, microtubule disruption, and ribonucleotide depletion , 2000 .

[33]  Shengyun Fang,et al.  Mdm2 Is a RING Finger-dependent Ubiquitin Protein Ligase for Itself and p53* , 2000, The Journal of Biological Chemistry.

[34]  M. Oren,et al.  The loss of mdm2 induces p53 mediated apoptosis , 2000, Oncogene.

[35]  S. Elledge,et al.  DNA damage-induced activation of p53 by the checkpoint kinase Chk2. , 2000, Science.

[36]  M. Kubbutat,et al.  Identification of a cryptic nucleolar-localization signal in MDM2 , 2000, Nature Cell Biology.

[37]  T. Halazonetis,et al.  Chk2/hCds1 functions as a DNA damage checkpoint in G(1) by stabilizing p53. , 2000, Genes & development.

[38]  J. D. Weber,et al.  The ARF/p53 pathway. , 2000, Current opinion in genetics & development.

[39]  Y Taya,et al.  The human homologs of checkpoint kinases Chk1 and Cds1 (Chk2) phosphorylate p53 at multiple DNA damage-inducible sites. , 2000, Genes & development.

[40]  G. Wahl,et al.  Differential requirement for p19ARF in the p53-dependent arrest induced by DNA damage, microtubule disruption, and ribonucleotide depletion. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[41]  Patrick Linder,et al.  Protein trans-Acting Factors Involved in Ribosome Biogenesis in Saccharomyces cerevisiae , 1999, Molecular and Cellular Biology.

[42]  R. Wadgaonkar,et al.  Murine Double Minute (MDM2) Blocks p53-coactivator Interaction, a New Mechanism for Inhibition of p53-dependent Gene Expression* , 1999, The Journal of Biological Chemistry.

[43]  Charles J. Sherr,et al.  Nucleolar Arf sequesters Mdm2 and activates p53 , 1999, Nature Cell Biology.

[44]  A. Levine,et al.  Analysis of the degradation function of Mdm2. , 1999, Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research.

[45]  R. Honda,et al.  Association of p19ARF with Mdm2 inhibits ubiquitin ligase activity of Mdm2 for tumor suppressor p53 , 1999, The EMBO journal.

[46]  V. Coleman To Live or Let Die , 1975, Science.

[47]  Y. Ioannou,et al.  Ribosomal proteins in cell proliferation and apoptosis. , 1999, International reviews of immunology.

[48]  K. Vousden,et al.  Cell cycle arrest and DNA endoreduplication following p21Waf1/Cip1 expression , 1998, Oncogene.

[49]  Kevin Ryan,et al.  The alternative product from the human CDKN2A locus, p14ARF, participates in a regulatory feedback loop with p53 and MDM2 , 1998, The EMBO journal.

[50]  M. Iordanov,et al.  Ultraviolet Radiation Triggers the Ribotoxic Stress Response in Mammalian Cells* , 1998, The Journal of Biological Chemistry.

[51]  Ken Chen,et al.  The Ink4a Tumor Suppressor Gene Product, p19Arf, Interacts with MDM2 and Neutralizes MDM2's Inhibition of p53 , 1998, Cell.

[52]  Yue Xiong,et al.  ARF Promotes MDM2 Degradation and Stabilizes p53: ARF-INK4a Locus Deletion Impairs Both the Rb and p53 Tumor Suppression Pathways , 1998, Cell.

[53]  Hirofumi Tanaka,et al.  Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53 , 1997, FEBS letters.

[54]  Stephen N. Jones,et al.  Regulation of p53 stability by Mdm2 , 1997, Nature.

[55]  M. Oren,et al.  Mdm2 promotes the rapid degradation of p53 , 1997, Nature.

[56]  M. Oren,et al.  Specific loss of apoptotic but not cell‐cycle arrest function in a human tumor derived p53 mutant. , 1996, The EMBO journal.

[57]  Lawrence A. Donehower,et al.  Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53 , 1995, Nature.

[58]  Guillermina Lozano,et al.  Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53 , 1995, Nature.

[59]  K. Vousden Regulation of the cell cycle by viral oncoproteins. , 1995, Seminars in cancer biology.

[60]  A. Levine,et al.  Regulation of Transcription Functions of the p53 Tumor Suppressor by the mdm-2 Oncogene , 1995, Molecular medicine.

[61]  A. Levine,et al.  The ribosomal L5 protein is associated with mdm-2 and mdm-2-p53 complexes , 1994, Molecular and cellular biology.

[62]  T. Crook,et al.  Interaction of p53 with MDM2 is independent of E6 and does not mediate wild type transformation suppressor function. , 1994, Oncogene.

[63]  M. Kastan,et al.  DNA strand breaks: the DNA template alterations that trigger p53-dependent DNA damage response pathways , 1994, Molecular and cellular biology.

[64]  A. Levine,et al.  The p53-mdm-2 autoregulatory feedback loop. , 1993, Genes & development.

[65]  M. Ewen,et al.  Inhibition of cell proliferation by p107, a relative of the retinoblastoma protein. , 1993, Genes & development.

[66]  Bert Vogelstein,et al.  Oncoprotein MDM2 conceals the activation domain of tumour suppressor p53 , 1993, Nature.

[67]  M. Oren,et al.  mdm2 expression is induced by wild type p53 activity. , 1993, The EMBO journal.

[68]  T. Tamaya,et al.  Scattering of the silver-stained proteins of nucleolar organizer regions in Ishikawa cells by actinomycin D. , 1992, Experimental cell research.

[69]  P. Meltzer,et al.  Amplification of a gene encoding a p53-associated protein in human sarcomas , 1992, Nature.

[70]  A. Levine,et al.  The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation , 1992, Cell.

[71]  D. George,et al.  Tumorigenic potential associated with enhanced expression of a gene that is amplified in a mouse tumor cell line. , 1991, The EMBO journal.

[72]  S. Fields,et al.  A novel genetic system to detect protein–protein interactions , 1989, Nature.

[73]  A. Kumar,et al.  Relationship between protein synthesis and ribosome assembly in HeLa cells. , 1971, Journal of molecular biology.

[74]  K. Kohn,et al.  Inhibition of the processing of ribosomal precursor RNA by intercalating agents. , 1971, Journal of molecular biology.

[75]  R. Perry,et al.  Inhibition of RNA synthesis by actinomycin D: Characteristic dose‐response of different RNA species , 1970, Journal of cellular physiology.

[76]  J. Darnell,et al.  Effects of valine deprivation on ribosome formation in HeLa cells. , 1969, Journal of molecular biology.