MDL Constrained 3-D Grayscale Skeletonization Algorithm for Automated Extraction of Dendrites and Spines from Fluorescence Confocal Images

This paper presents a method for improved automatic delineation of dendrites and spines from three-dimensional (3-D) images of neurons acquired by confocal or multi-photon fluorescence microscopy. The core advance presented here is a direct grayscale skeletonization algorithm that is constrained by a structural complexity penalty using the minimum description length (MDL) principle, and additional neuroanatomy-specific constraints. The 3-D skeleton is extracted directly from the grayscale image data, avoiding errors introduced by image binarization. The MDL method achieves a practical tradeoff between the complexity of the skeleton and its coverage of the fluorescence signal. Additional advances include the use of 3-D spline smoothing of dendrites to improve spine detection, and graph-theoretic algorithms to explore and extract the dendritic structure from the grayscale skeleton using an intensity-weighted minimum spanning tree (IW-MST) algorithm. This algorithm was evaluated on 30 datasets organized in 8 groups from multiple laboratories. Spines were detected with false negative rates less than 10% on most datasets (the average is 7.1%), and the average false positive rate was 11.8%. The software is available in open source form.

[1]  Gerald Krell,et al.  Restoration of three-dimensional quasi-binary images from confocal microscopy and its application to dendritic trees , 1997, Photonics West - Biomedical Optics.

[2]  Jorma Rissanen,et al.  The Minimum Description Length Principle in Coding and Modeling , 1998, IEEE Trans. Inf. Theory.

[3]  J. A. Bondy,et al.  Graph Theory with Applications , 1978 .

[4]  Andrew R. Cohen,et al.  Automated tracing and volume measurements of neurons from 3‐D confocal fluorescence microscopy data , 1994, Journal of microscopy.

[5]  Holger Theisel,et al.  Vector Field Metrics Based on Distance Measures of First Order Critical Points , 2002, WSCG.

[6]  Badrinath Roysam,et al.  Robust 3-D Modeling of Vasculature Imagery Using Superellipsoids , 2007, IEEE Transactions on Medical Imaging.

[7]  Badrinath Roysam,et al.  A 2-D/3-D model-based method to quantify the complexity of microvasculature imaged by in vivo multiphoton microscopy. , 2005, Microvascular research.

[8]  Murat Yuksel,et al.  Automatic selection of parameters for vessel/neurite segmentation algorithms , 2005, IEEE Transactions on Image Processing.

[9]  Tat-Jen Cham,et al.  Automated B-Spline Curve Representation Incorporating MDL and Error-Minimizing Control Point Insertion Strategies , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  B. Kampa,et al.  Synaptic integration in dendritic trees. , 2005, Journal of neurobiology.

[11]  Yong Zhang,et al.  A novel tracing algorithm for high throughput imaging Screening of neuron-based assays , 2007, Journal of Neuroscience Methods.

[12]  Hong Shen,et al.  Rapid automated tracing and feature extraction from retinal fundus images using direct exploratory algorithms , 1999, IEEE Transactions on Information Technology in Biomedicine.

[13]  Steve M. Potter Vital imaging: Two photons are better than one , 1996, Current Biology.

[14]  Dima Damen,et al.  Recognizing linked events: Searching the space of feasible explanations , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[15]  Ioannis A Kakadiaris,et al.  Live neuron morphology automatically reconstructed from multiphoton and confocal imaging data. , 2008, Journal of neurophysiology.

[16]  Edmund M. Glaser,et al.  The image-combining computer microscope — an interactive instrument for morphometry of the nervous system , 1983, Journal of Neuroscience Methods.

[17]  Jaap van Pelt,et al.  A shape analysis framework for neuromorphometry , 2002, Network.

[18]  Khalid A. Al-Kofahi,et al.  Rapid automated three-dimensional tracing of neurons from confocal image stacks , 2002, IEEE Transactions on Information Technology in Biomedicine.

[19]  P Wallén,et al.  Three‐dimensional imaging of neurons by confocal fluorescence microscopy , 1989, Journal of microscopy.

[20]  Borivoj Vojnovic,et al.  Towards high-throughput FLIM for protein-protein interaction screening of live cells and tissue microarrays , 2008, 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[21]  L. da Fontoura Costa,et al.  Semi-automated dendrogram generation for neural shape analysis , 1997, Proceedings X Brazilian Symposium on Computer Graphics and Image Processing.

[22]  E Meijering,et al.  Design and validation of a tool for neurite tracing and analysis in fluorescence microscopy images , 2004, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[23]  R. Jain,et al.  Automated tracing and change analysis of angiogenic vasculature from in vivo multiphoton confocal image time series. , 2003, Microvascular research.

[24]  A. Dunaevsky,et al.  Dendritic spine morphogenesis and plasticity. , 2005, Journal of neurobiology.

[25]  Xiaoyin Xu,et al.  Optical microscopic image processing of dendritic spines morphology , 2006, IEEE Signal Process. Mag..

[26]  Yvan G. Leclerc,et al.  Constructing simple stable descriptions for image partitioning , 1989, International Journal of Computer Vision.

[27]  Eric L. Miller,et al.  Automated Axon Tracking of 3D Confocal Laser Scanning Microscopy Images Using Guided Probabilistic Region Merging , 2007, Neuroinformatics.

[28]  Xiaobo Zhou,et al.  Automated neurite labeling and analysis in fluorescence microscopy images , 2006, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[29]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[30]  Douglas B. Ehlenberger,et al.  Automated reconstruction of three-dimensional neuronal morphology from laser scanning microscopy images. , 2003, Methods.

[31]  J N Turner,et al.  Three‐dimensional imaging and image analysis of hippocampal neurons: Confocal and digitally enhanced wide field microscopy , 1994, Microscopy research and technique.

[32]  Andrew Blake,et al.  Visual Reconstruction , 1987, Deep Learning for EEG-Based Brain–Computer Interfaces.

[33]  J. Rissanen,et al.  Modeling By Shortest Data Description* , 1978, Autom..

[34]  Stephen T. C. Wong,et al.  Automatic dendritic spine analysis in two‐photon laser scanning microscopy images , 2007, Cytometry Part A.

[35]  J N Turner,et al.  Topographically modified surfaces affect orientation and growth of hippocampal neurons , 2004, Journal of neural engineering.

[36]  M. Matsuzaki Factors critical for the plasticity of dendritic spines and memory storage , 2007, Neuroscience Research.

[37]  Xiaobo Zhou,et al.  NeuronIQ: A novel computational approach for automatic dendrite spines detection and analysis , 2007, 2007 IEEE/NIH Life Science Systems and Applications Workshop.

[38]  Badrinath Roysam,et al.  Automated Three-Dimensional Tracing of Neurons in Confocal and Brightfield Images , 2003, Microscopy and Microanalysis.

[39]  Pavel Vesely,et al.  Handbook of Biological Confocal Microscopy, 3rd ed. By James B. Pawley, Editor. Springer Science + Business Media, LLC, New York (2006). ISBN 10: 0‐387‐25921‐X; ISBN 13: 987‐0387‐25921‐5; hardback; 28 + 985 pages , 2007 .

[40]  Badrinath Roysam,et al.  Improved detection of branching points in algorithms for automated neuron tracing from 3D confocal images , 2008, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[41]  J. A. Bondy,et al.  Graph Theory with Applications , 1978 .

[42]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[43]  Joseph J. Capowski,et al.  Computer Techniques in Neuroanatomy , 1989, Springer US.

[44]  Alejandro F. Frangi,et al.  Muliscale Vessel Enhancement Filtering , 1998, MICCAI.

[45]  Michael Scholz,et al.  New methods for the computer-assisted 3-D reconstruction of neurons from confocal image stacks , 2004, NeuroImage.

[46]  Al Globus,et al.  A tool for visualizing the topology of three-dimensional vector fields , 1991, Proceeding Visualization '91.

[47]  Ken D. Sauer,et al.  A generalized Gaussian image model for edge-preserving MAP estimation , 1993, IEEE Trans. Image Process..

[48]  Rochelle M. Witt,et al.  Automated Spine Detection Using Curvilinear Structure Detector and LDA Classifier , 2007, 2007 4th IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[49]  Luciano da Fontoura Costa,et al.  Computer-vision-based extraction of neural dendrograms , 1999, Journal of Neuroscience Methods.

[50]  Paul Dierckx,et al.  Curve and surface fitting with splines , 1994, Monographs on numerical analysis.

[51]  G. Ascoli,et al.  L-Measure: a web-accessible tool for the analysis, comparison and search of digital reconstructions of neuronal morphologies , 2008, Nature Protocols.

[52]  Nicholas Ayache,et al.  Smoothing and matching of 3-d space curves , 2005, International Journal of Computer Vision.

[53]  Badrinath Roysam,et al.  Automated parameter selection for segmentation of tube-like biological structures using optimization algorithm and mdl , 2005 .

[54]  Douglas B. Ehlenberger,et al.  Rayburst sampling, an algorithm for automated three-dimensional shape analysis from laser scanning microscopy images , 2006, Nature Protocols.

[55]  J. Pawley,et al.  Handbook of Biological Confocal Microscopy , 1990, Springer US.

[56]  David F. Rogers,et al.  Procedural Elements for Computer Graphics , 1984 .

[57]  W. Brent Lindquist,et al.  Automated Algorithms for Multiscale Morphometry of Neuronal Dendrites , 2004, Neural Computation.

[58]  Evangelos E. Milios,et al.  Optimal spline fitting to planar shape , 1994, Signal Process..

[59]  Yong Zhang,et al.  Dendritic spine detection using curvilinear structure detector and LDA classifier , 2007, NeuroImage.

[60]  Steve M. Potter,et al.  Two-photon Microscopy for 4D Imaging of Living Neurons , 2000 .

[61]  Badrinath Roysam,et al.  Light Microscopic Images Reconstructed by Maximum Likelihood Deconvolution , 1995 .

[62]  Stephen T. C. Wong,et al.  Classification and Uncertainty Visualization of Dendritic Spines from Optical Microscopy Imaging , 2008, Comput. Graph. Forum.

[63]  William Schroeder,et al.  The Visualization Toolkit: An Object-Oriented Approach to 3-D Graphics , 1997 .

[64]  P. Kalus,et al.  The dendritic architecture of prefrontal pyramidal neurons in schizophrenic patients , 2000, Neuroreport.

[65]  L. Schumaker Spline Functions: Basic Theory , 1981 .

[66]  K. Svoboda,et al.  Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex , 2002, Nature.

[67]  Joseph A. O'Sullivan,et al.  Representing and computing regular languages on massively parallel networks , 1991, IEEE Trans. Neural Networks.

[68]  Douglas B. Ehlenberger,et al.  New techniques for imaging, digitization and analysis of three-dimensional neural morphology on multiple scales , 2005, Neuroscience.

[69]  W. Brent Lindquist,et al.  An Image Analysis Algorithm for Dendritic Spines , 2002, Neural Computation.

[70]  Yoshimitsu Aoki,et al.  Automatic analysis for neuron by confocal laser scanning microscope , 2005, International Symposium on Optomechatronic Technologies.

[71]  Alejandro F. Frangi,et al.  Model-based quantitation of 3-D magnetic resonance angiographic images , 1999, IEEE Transactions on Medical Imaging.

[72]  Rafael Yuste,et al.  Imaging in Neuroscience and Development: A Laboratory Manual , 2004 .

[73]  L. J. van Vliet,et al.  Grey-Scale Measurements in Multi-Dimensional Digitized Images , 1993 .

[74]  Bartlett W. Mel,et al.  Information Processing in Dendritic Trees , 1994, Neural Computation.

[75]  Balasubramanian Raman,et al.  Computing hierarchical curve-skeletons of 3D objects , 2005, The Visual Computer.

[76]  M. London,et al.  Dendritic computation. , 2005, Annual review of neuroscience.

[77]  Zeyun Yu,et al.  A segmentation-free approach for skeletonization of gray-scale images via anisotropic vector diffusion , 2004, CVPR 2004.

[78]  Steve M. Potter,et al.  Precisely timed spatiotemporal patterns of neural activity in dissociated cortical cultures , 2007, Neuroscience.

[79]  Francis K. H. Quek,et al.  A review of vessel extraction techniques and algorithms , 2004, CSUR.

[80]  Karen L. Smith,et al.  Confocal microscopy and three-dimensional reconstruction of electrophysiologically identified neurons in thick brain slices. , 1991, Journal of electron microscopy technique.

[81]  Luciano da Fontoura Costa,et al.  Multiscale skeletons by image foresting transform and its application to neuromorphometry , 2002, Pattern Recognit..

[82]  Stephen T. C. Wong,et al.  Repulsive force based snake model to segment and track neuronal axons in 3D microscopy image stacks , 2006, NeuroImage.

[83]  Xiaobo Zhou,et al.  A novel computational approach for automatic dendrite spines detection in two-photon laser scan microscopy , 2007, Journal of Neuroscience Methods.

[84]  F. Bloom,et al.  Cerebral Cortex Advance Access published March 28, 2004 High-throughput Morphometric Analysis of Individual Neurons , 2022 .

[85]  Khalid A. Al-Kofahi,et al.  Median-based robust algorithms for tracing neurons from noisy confocal microscope images , 2003, IEEE Transactions on Information Technology in Biomedicine.

[86]  Thomas H. Cormen,et al.  Introduction to algorithms [2nd ed.] , 2001 .

[87]  Olivier Boëffard,et al.  Melodic contour estimation with B-spline models using a MDL criterion , 2006 .

[88]  Frank Harary,et al.  Graph Theory , 2016 .

[89]  Mark A. Pitt,et al.  Advances in Minimum Description Length: Theory and Applications , 2005 .

[90]  Zeyun Yu,et al.  A segmentation-free approach for skeletonization of gray-scale images via anisotropic vector diffusion , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[91]  R. Yuste,et al.  Morphological changes in dendritic spines associated with long-term synaptic plasticity. , 2001, Annual review of neuroscience.