CuO single crystal with exposed {001} facets - A highly efficient material for gas sensing and Li-ion battery applications

[1]  Junming Guo,et al.  Preparation of octahedral CuO micro/nanocrystals and electrochemical performance as anode for lithium-ion battery , 2014 .

[2]  Yitai Qian,et al.  Copper Oxide Hierarchical Microspheres Grown on Copper Foil and Their Enhanced Performance as Anodes for Li-ion Batteries , 2014, International Journal of Electrochemical Science.

[3]  B. Pecquenard,et al.  Direct observation of important morphology and composition changes at the surface of the CuO conversion material in lithium batteries , 2014 .

[4]  S. Suresh,et al.  Preparation and characterization of CuO nanostructures on copper substrate as selective solar absorbers , 2014 .

[5]  Chunsheng Wang,et al.  Nano-structured carbon-coated CuO hollow spheres as stable and high rate anodes for lithium-ion batteries , 2013 .

[6]  P. Novák,et al.  Size controlled CuO nanoparticles for Li-ion batteries , 2013 .

[7]  Zhaoping Liu,et al.  Co3O4 Nanowires as High Capacity Anode Materials for Lithium Ion Batteries. , 2012 .

[8]  Zhaoping Liu,et al.  Co3O4 nanowires as high capacity anode materials for lithium ion batteries , 2012 .

[9]  Chunsheng Wang,et al.  Sponge-like porous carbon/tin composite anode materials for lithium ion batteries , 2012 .

[10]  Peng Zhang,et al.  Microwave-induced synthesis of porous single-crystal-like TiO2 with excellent lithium storage properties. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[11]  Minwei Xu,et al.  Controlled synthesis of uniform ultrafine CuO nanowires as anode material for lithium-ion batteries , 2011 .

[12]  U. Lafont,et al.  Nanostructured Fe2O3 and CuO composite electrodes for Li ion batteries synthesized and deposited in one step , 2011 .

[13]  X. Lou,et al.  Carbon-supported ultra-thin anatase TiO2 nanosheets for fast reversible lithium storage , 2011 .

[14]  L. Squire,et al.  Memory, Visual Discrimination Performance, and the Human Hippocampus , 2011, The Journal of Neuroscience.

[15]  Y. Qiao,et al.  Electrochemical Impedance Analysis of a Hierarchical CuO Electrode Composed of Self-Assembled Nanoplates , 2011 .

[16]  Chun-hua Chen,et al.  Fe3O4 submicron spheroids as anode materials for lithium-ion batteries with stable and high electrochemical performance , 2010 .

[17]  Mietek Jaroniec,et al.  Tunable photocatalytic selectivity of hollow TiO2 microspheres composed of anatase polyhedra with exposed {001} facets. , 2010, Journal of the American Chemical Society.

[18]  Zaiping Guo,et al.  Solvent-assisted molten salt process: A new route to synthesise α-Fe2O3/C nanocomposite and its electrochemical performance in lithium-ion batteries , 2010 .

[19]  Chang Ming Li,et al.  Constructing hierarchical spheres from large ultrathin anatase TiO2 nanosheets with nearly 100% exposed (001) facets for fast reversible lithium storage. , 2010, Journal of the American Chemical Society.

[20]  Lianzhou Wang,et al.  Titania-based photocatalysts—crystal growth, doping and heterostructuring , 2010 .

[21]  Shuru Chen,et al.  One-step fabrication of CuO nanoribbons array electrode and its excellent lithium storage performance , 2009 .

[22]  G. Lu,et al.  Visible light responsive nitrogen doped anatase TiO2 sheets with dominant {001} facets derived from TiN. , 2009, Journal of the American Chemical Society.

[23]  Sean C. Smith,et al.  Solvothermal synthesis and photoreactivity of anatase TiO(2) nanosheets with dominant {001} facets. , 2009, Journal of the American Chemical Society.

[24]  Jin Zou,et al.  Anatase TiO2 single crystals with a large percentage of reactive facets , 2008, Nature.

[25]  P. Bruce,et al.  Nanomaterials for rechargeable lithium batteries. , 2008, Angewandte Chemie.

[26]  M. Flytzani-Stephanopoulos,et al.  Shape and crystal-plane effects of nanoscale ceria on the activity of Au-CeO2 catalysts for the water-gas shift reaction. , 2008, Angewandte Chemie.

[27]  Bin Wang,et al.  Preparation of Nanowire Arrays of Amorphous Carbon Nanotube-Coated Single Crystal SnO2 , 2008 .

[28]  M. Armand,et al.  Building better batteries , 2008, Nature.

[29]  L. Rout,et al.  Efficient CuO-nanoparticle-catalyzed C-S cross-coupling of thiols with iodobenzene. , 2007, Angewandte Chemie.

[30]  Ralf Riedel,et al.  In situ and operando spectroscopy for assessing mechanisms of gas sensing. , 2007, Angewandte Chemie.

[31]  Zhong Lin Wang,et al.  Synthesis of Tetrahexahedral Platinum Nanocrystals with High-Index Facets and High Electro-Oxidation Activity , 2007, Science.

[32]  Lingyan Wang,et al.  Observation of superspin-glass behavior in Fe$_{3}$O$_{4}$ nanoparticles and superparamagnetic behavior in gold-coated Fe$_{3}$O$_{4}$ nanoparticles , 2006, cond-mat/0608297.

[33]  Yu‐Guo Guo,et al.  High Lithium Electroactivity of Nanometer‐Sized Rutile TiO2 , 2006 .

[34]  Gerbrand Ceder,et al.  Oxidation energies of transition metal oxides within the GGA+U framework , 2006 .

[35]  Qing Peng,et al.  Nearly Monodisperse Cu2O and CuO Nanospheres: Preparation and Applications for Sensitive Gas Sensors , 2006 .

[36]  Zhichuan J. Xu,et al.  Highly ordered self-assembly with large area of Fe3O4 nanoparticles and the magnetic properties. , 2005, The journal of physical chemistry. B.

[37]  J. Maier,et al.  Nanoionics: ion transport and electrochemical storage in confined systems , 2005, Nature materials.

[38]  Xue-qing Gong,et al.  Reactivity of anatase TiO(2) nanoparticles: the role of the minority (001) surface. , 2005, The journal of physical chemistry. B.

[39]  Tanghong Yi,et al.  Cu nanoparticles derived from CuO electrodes in lithium cells , 2005, Nanotechnology.

[40]  M. El-Sayed,et al.  Chemistry and properties of nanocrystals of different shapes. , 2005, Chemical reviews.

[41]  Palani Balaya,et al.  Fully Reversible Homogeneous and Heterogeneous Li Storage in RuO2 with High Capacity , 2003 .

[42]  J. Tarascon,et al.  An update on the reactivity of nanoparticles Co-based compounds towards Li , 2003 .

[43]  Younan Xia,et al.  Shape-Controlled Synthesis of Gold and Silver Nanoparticles , 2002, Science.

[44]  J. Feliu,et al.  Role of Crystalline Defects in Electrocatalysis: Mechanism and Kinetics of CO Adlayer Oxidation on Stepped Platinum Electrodes , 2002 .

[45]  Peidong Yang,et al.  Photochemical sensing of NO(2) with SnO(2) nanoribbon nanosensors at room temperature. , 2002, Angewandte Chemie.

[46]  J. Tarascon,et al.  On the Origin of the Extra Electrochemical Capacity Displayed by MO/Li Cells at Low Potential , 2002 .

[47]  Charles M. Lieber,et al.  Growth of nanowire superlattice structures for nanoscale photonics and electronics , 2002, Nature.

[48]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[49]  J. Tarascon,et al.  A Transmission Electron Microscopy Study of the Reactivity Mechanism of Tailor-Made CuO Particles toward Lithium , 2001 .

[50]  Sylvie Grugeon,et al.  Nano‐Sized Transition‐Metal Oxides as Negative‐Electrode Materials for Lithium‐Ion Batteries. , 2001 .

[51]  V. Anisimov,et al.  Band theory and Mott insulators: Hubbard U instead of Stoner I. , 1991, Physical review. B, Condensed matter.

[52]  Popovic,et al.  Far-infrared spectroscopic investigations on CuO. , 1990, Physical review. B, Condensed matter.

[53]  D. Vanderbilt,et al.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.

[54]  A. Zunger,et al.  Self-interaction correction to density-functional approximations for many-electron systems , 1981 .

[55]  Ling Huang,et al.  Structure and electrochemical performance of nanostructured Fe3O4/carbon nanotube composites as anodes for lithium ion batteries , 2010 .

[56]  I. Suzuki,et al.  Observation of superspin-glass behavior in Fe3O4 nanoparticles , 2007 .

[57]  Qing Peng,et al.  Enhanced catalytic activity of ceria nanorods from well-defined reactive crystal planes , 2005 .