Weak measurement of magneto-optical Goos-Hänchen effect.

As a lateral shift of reflected light beam from the optical interface, the Goos-Hänchen (GH) effect led to various practical applications in biosensing and optical field manipulations. Magneto-optical (MO) effect of dielectric or metal may bring flexible modulation for GH effect, which can be regarded as the magneto-optical Goos-Hänchen (MOGH) effect. In this paper, the GH and MOGH effects in a BK7 prism/Fe/Au waveguide enhanced by surface plasmon resonance (SPR) are demonstrated experimentally for the first time. By weak measurement, the GH and MOGH shifts are further amplified to facilitate their applications. By contrast, the results of theory and experiment are basically consistent. The maximum MOGH shift of the proposed BK7/Fe/Au waveguide achieves 120 μm when optimum thicknesses are chosen. As MOGH effect exhibits a higher sensitivity to the refractive index of sample than GH shift, it can be applied in refractive index detection. The demonstrated MOGH effect with advantages of high sensitivity and convenient control opens avenues for future applications with biosensors and functionally optical devices.

[1]  S. Wen,et al.  Experimental observation of the spin Hall effect of light on a nanometal film via weak measurements , 2011, 1112.4560.

[2]  Jianquan Yao,et al.  Realization of tunable Goos-Hänchen effect with magneto-optical effect in graphene , 2018, Carbon.

[3]  G. Armelles,et al.  Magnetoplasmonics: Combining Magnetic and Plasmonic Functionalities , 2013 .

[4]  Shuangchun Wen,et al.  Observation of the Goos-Hänchen shift in graphene via weak measurements , 2016, 1609.00456.

[5]  Y. P. Lee,et al.  Influence of misfit strain on the Goos–Hänchen shift upon reflection from a magnetic film on a nonmagnetic substrate , 2016, 1903.01948.

[6]  Xiaohui Ling,et al.  Photonic spin Hall effect enabled refractive index sensor using weak measurements , 2018, Scientific Reports.

[7]  Shuangchun Wen,et al.  Optical edge detection based on high-efficiency dielectric metasurface , 2019, Proceedings of the National Academy of Sciences.

[8]  M. S. Zubairy,et al.  Tunable Goos-Hänchen shift from graphene ribbon array. , 2017, Optics express.

[9]  J. Lundeen,et al.  Direct measurement of the quantum wavefunction , 2011, Nature.

[10]  Weak measurement of the Goos-Hänchen shift , 2013, CLEO: 2013.

[11]  Z. Qiao,et al.  Tunable Goos–Hänchen and Imbert–Fedorov shifts , 2019, Optics Communications.

[12]  C. Bruder,et al.  Measuring ultrasmall time delays of light by joint weak measurements. , 2013, Physical review letters.

[13]  Honggen Li,et al.  Observation of large positive and negative lateral shifts of a reflected beam from symmetrical metal-cladding waveguides. , 2007, Optics letters.

[14]  Jinglei Du,et al.  Determination of magneto-optical constant of Fe films with weak measurements , 2014 .

[15]  Tao Shui,et al.  Squeezing-induced giant Goos-Hänchen shift and hypersensitized displacement sensor in a two-level atomic system , 2019, Physical Review A.

[16]  Aparupa Kar,et al.  Long range surface plasmon resonance enhanced electro-optically tunable Goos–Hänchen shift and Imbert–Fedorov shift in ZnSe prism , 2014 .

[17]  Controlling the Goos-Hänchen shift with external electric and magnetic fields in an electro-optic/magneto-electric heterostructure , 2016 .

[18]  F. Goos,et al.  Ein neuer und fundamentaler Versuch zur Totalreflexion , 1947 .

[19]  Controlling optical beam shifts upon reflection from a magneto-electric liquid-crystal-based system for applications to chemical vapor sensing , 2017 .

[20]  Y. Dadoenkova,et al.  Goos-Hänchen effect in light transmission through biperiodic photonic-magnonic crystals , 2017, 1811.09865.

[21]  S. Wen,et al.  Giant quantized Goos-Hänchen effect on the surface of graphene in the quantum Hall regime , 2017, 1708.00193.

[22]  M. Tomita,et al.  Observation of Goos-Hänchen shift in plasmon-induced transparency , 2018 .

[23]  K. V. Sreekanth,et al.  Giant enhancement in Goos-Hänchen shift at the singular phase of a nanophotonic cavity , 2018 .

[24]  S. Wen,et al.  Goos-Hänchen and Imbert-Fedorov effects in Weyl semimetals , 2019, Physical Review A.

[25]  Lambertus Hesselink,et al.  Goos-Hänchen shift surface plasmon resonance sensor , 2006 .

[26]  Aephraim M. Steinberg,et al.  Observing the Average Trajectories of Single Photons in a Two-Slit Interferometer , 2011, Science.

[27]  S. Wen,et al.  Observation of Spin Hall Effect in Photon Tunneling via Weak Measurements , 2014, Scientific Reports.

[28]  V. Nayyar,et al.  Lateral displacement of a light beam at a ferrite interface , 1991 .

[29]  Tingting Tang,et al.  Magneto-optical Goos-Hänchen effect in a prism-waveguide coupling structure. , 2014, Optics express.

[30]  Octávio J. S. Santana,et al.  Direct measurement of the composite Goos-Hänchen shift of an optical beam. , 2018, Optics letters.

[31]  Yuanjiang Xiang,et al.  Tunable enhanced Goos–Hänchen shift of light beam reflected from graphene-based hyperbolic metamaterials , 2018 .

[32]  R. W. Christy,et al.  Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd , 1974 .

[33]  G. Jayaswal,et al.  Weak measurement of the Goos-Hänchen shift , 2013, CLEO 2013.

[34]  Yang Wang,et al.  High-sensitivity temperature sensor using the ultrahigh order mode-enhanced Goos-Hänchen effect. , 2013, Optics express.

[35]  Shuangchun Wen,et al.  Generalized Spatial Differentiation from the Spin Hall Effect of Light and Its Application in Image Processing of Edge Detection , 2019, Physical Review Applied.

[36]  Onur Hosten,et al.  Observation of the Spin Hall Effect of Light via Weak Measurements , 2008, Science.

[37]  Goos–Hänchen effect in semiconductor metamaterial waveguide and its application as a biosensor , 2016 .