Parameter Estimation of Three-Phase Induction Motor Using Hybrid of Genetic Algorithm and Particle Swarm Optimization

A cost effective off-line method for equivalent circuit parameter estimation of an induction motor using hybrid of genetic algorithm and particle swarm optimization (HGAPSO) is proposed. The HGAPSO inherits the advantages of both genetic algorithm (GA) and particle swarm optimization (PSO). The parameter estimation methodology describes a method for estimating the steady-state equivalent circuit parameters from the motor performance characteristics, which is normally available from the nameplate data or experimental tests. In this paper, the problem formulation uses the starting torque, the full load torque, the maximum torque, and the full load power factor which are normally available from the manufacturer data. The proposed method is used to estimate the stator and rotor resistances, the stator and rotor leakage reactances, and the magnetizing reactance in the steady-state equivalent circuit. The optimization problem is formulated to minimize an objective function containing the error between the estimated and the manufacturer data. The validity of the proposed method is demonstrated for a preset model of induction motor in MATLAB/Simulink. Also, the performance evaluation of the proposed method is carried out by comparison between the results of the HGAPSO, GA, and PSO.

[1]  Hasan Temurtaş,et al.  Induction motor parameter estimation using metaheuristic methods , 2014 .

[2]  David B. Fogel,et al.  Evolutionary Computation: A New Transactions , 1997, IEEE Trans. Evol. Comput..

[3]  Leon M. Tolbert,et al.  Adaptive Selective Harmonic Minimization Based on ANNs for Cascade Multilevel Inverters With Varying DC Sources , 2013, IEEE Transactions on Industrial Electronics.

[4]  Paolo Castaldi,et al.  Parameter estimation of induction motor at standstill with magnetic flux monitoring , 2005, IEEE Transactions on Control Systems Technology.

[5]  Maurice Clerc,et al.  The particle swarm - explosion, stability, and convergence in a multidimensional complex space , 2002, IEEE Trans. Evol. Comput..

[6]  Thomas Bäck,et al.  An Overview of Evolutionary Algorithms for Parameter Optimization , 1993, Evolutionary Computation.

[7]  J. Jatskevich,et al.  Efficient Explicit Representation of AC Machines Main Flux Saturation in State-Variable-Based Transient Simulation Packages , 2013, IEEE Transactions on Energy Conversion.

[8]  Kalyanmoy Deb,et al.  Multi-objective optimization using evolutionary algorithms , 2001, Wiley-Interscience series in systems and optimization.

[9]  F.J. Lin,et al.  Recurrent Fuzzy Neural Network Using Genetic Algorithm for Linear Induction Motor Servo Drive , 2006, 2006 1ST IEEE Conference on Industrial Electronics and Applications.

[10]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[11]  K. S. Huang,et al.  Parameter Identification for FOC Induction Motors Using Genetic Algorithms with Improved Mathematical Model , 2001 .

[12]  Mehrdad Tarafdar Hagh,et al.  Harmonic Elimination of Cascade Multilevel Inverters with Nonequal DC Sources Using Particle Swarm Optimization , 2010, IEEE Transactions on Industrial Electronics.

[13]  R. Bhuvaneswari,et al.  Multi-objective parameter estimation of induction motor using particle swarm optimization , 2010, Eng. Appl. Artif. Intell..

[14]  Mohamed A. Awadallah,et al.  Parameter Estimation of Induction Machines from Nameplate Data Using Particle Swarm Optimization and Genetic Algorithm Techniques , 2008 .

[15]  Chia-Feng Juang,et al.  A hybrid of genetic algorithm and particle swarm optimization for recurrent network design , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[16]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[17]  Ma Weiming,et al.  Analytical Calculation of Inductances of Windings in Electrical Machines With Slot Skew , 2011 .