Preconditioners for the Discontinuous Galerkin time-stepping method of arbitrary order
暂无分享,去创建一个
[1] John C. Butcher,et al. On the implementation of implicit Runge-Kutta methods , 1976 .
[2] A. Bonito,et al. A dG Approach to Higher Order ALE Formulations in Time , 2014 .
[3] Laurent O. Jay,et al. Inexact Simplified Newton Iterations for Implicit Runge-Kutta Methods , 2000, SIAM J. Numer. Anal..
[4] W. D. Evans,et al. PARTIAL DIFFERENTIAL EQUATIONS , 1941 .
[5] Yvan Notay,et al. Aggregation-Based Algebraic Multigrid for Convection-Diffusion Equations , 2012, SIAM J. Sci. Comput..
[6] R. LeVeque. High-resolution conservative algorithms for advection in incompressible flow , 1996 .
[7] J. Guermond,et al. Theory and practice of finite elements , 2004 .
[8] Dominik Schötzau,et al. hp-discontinuous Galerkin time stepping for parabolic problems , 2001 .
[9] Bülent Karasözen,et al. Variational time discretization methods for optimal control problems governed by diffusion-convection-reaction equations , 2014, J. Comput. Appl. Math..
[10] Martin Stoll,et al. All-at-once solution of time-dependent Stokes control , 2013, J. Comput. Phys..
[11] Stefan Turek,et al. Higher order Galerkin time discretizations and fast multigrid solvers for the heat equation , 2011, J. Num. Math..
[12] Y. Notay. An aggregation-based algebraic multigrid method , 2010 .
[13] Ricardo H. Nochetto,et al. Galerkin and Runge–Kutta methods: unified formulation, a posteriori error estimates and nodal superconvergence , 2011, Numerische Mathematik.
[14] Kenneth Eriksson,et al. Adaptive finite element methods for parabolic problems. I.: a linear model problem , 1991 .
[15] Steffen Basting,et al. Efficient preconditioning of variational time discretization methods for parabolic Partial Differential Equations , 2015 .
[16] Thomas Richter,et al. Efficient numerical realization of discontinuous Galerkin methods for temporal discretization of parabolic problems , 2013, Numerische Mathematik.
[17] L. Evans,et al. Partial Differential Equations , 1941 .
[18] R. Freund. On conjugate gradient type methods and polynomial preconditioners for a class of complex non-hermitian matrices , 1990 .
[19] Ricardo H. Nochetto,et al. Preconditioning a class of fourth order problems by operator splitting , 2011, Numerische Mathematik.
[20] Ricardo H. Nochetto,et al. Time-Discrete Higher-Order ALE Formulations: Stability , 2013, SIAM J. Numer. Anal..
[21] Artem Napov,et al. An Algebraic Multigrid Method with Guaranteed Convergence Rate , 2012, SIAM J. Sci. Comput..
[22] Roland W. Freund,et al. Conjugate Gradient-Type Methods for Linear Systems with Complex Symmetric Coefficient Matrices , 1992, SIAM J. Sci. Comput..
[23] Martin Stoll. One-shot solution of a time-dependent time-periodic PDE-constrained optimization problem , 2014 .
[24] Dominik Schötzau,et al. Time Discretization of Parabolic Problems by the HP-Version of the Discontinuous Galerkin Finite Element Method , 2000, SIAM J. Numer. Anal..
[25] P. Raviart,et al. On a Finite Element Method for Solving the Neutron Transport Equation , 1974 .
[26] Ricardo H. Nochetto,et al. A posteriori error analysis for higher order dissipative methods for evolution problems , 2006, Numerische Mathematik.
[27] Gene H. Golub,et al. Matrix computations , 1983 .
[28] R. Temam,et al. Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .
[29] Laurent O. Jay,et al. A parallelizable preconditioner for the iterative solution of implicit Runge-Kutta-type methods , 1999 .
[30] Trygve K. Nilssen,et al. Preconditioning of fully implicit Runge-Kutta schemes for parabolic PDEs , 2006 .
[31] Kent-André Mardal,et al. Order-Optimal Preconditioners for Implicit Runge-Kutta Schemes Applied to Parabolic PDEs , 2007, SIAM J. Sci. Comput..