A phase-field model for ferroelectrics with general kinetics, Part I: Model formulation

[1]  D. Kochmann,et al.  Kinetics of ferroelectric switching in poled barium titanate ceramics: Effects of electrical cycling rate , 2022, Materialia.

[2]  Mohsen Rezaee-Hajidehi,et al.  Micromorphic approach to phase-field modeling of multivariant martensitic transformation with rate-independent dissipation effects , 2021, International Journal of Solids and Structures.

[3]  D. Kochmann,et al.  A phase-field approach to studying the temperature-dependent ferroelectric response of bulk polycrystalline PZT , 2020, Journal of the Mechanics and Physics of Solids.

[4]  L. De Lorenzis,et al.  Calibration of material parameters based on 180$$^\circ $$ and 90$$^\circ $$ ferroelectric domain wall properties in Ginzburg–Landau–Devonshire phase field models , 2020 .

[5]  H. Kungl,et al.  Influence of crystallographic structure on polarization reversal in polycrystalline ferroelectric/ferroelastic materials , 2019, Journal of Applied Physics.

[6]  Dragan Damjanovic,et al.  Revealing the sequence of switching mechanisms in polycrystalline ferroelectric/ferroelastic materials , 2018, Acta Materialia.

[7]  S. Stupkiewicz,et al.  Rate-independent dissipation in phase-field modelling of displacive transformations , 2018 .

[8]  D. Kochmann,et al.  Predicting the effective response of bulk polycrystalline ferroelectric ceramics via improved spectral phase field methods , 2017 .

[9]  H. von Seggern,et al.  Polarisation dependence of Schottky barrier heights at ferroelectric BaTiO3 / RuO2 interfaces: influence of substrate orientation and quality , 2016 .

[10]  Ilya Grinberg,et al.  Intrinsic ferroelectric switching from first principles , 2016, Nature.

[11]  Vaibhav Agrawal Multiscale Phase-field Model for Phase Transformation and Fracture , 2016 .

[12]  Kaushik Dayal,et al.  A dynamic phase-field model for structural transformations and twinning: Regularized interfaces with transparent prescription of complex kinetics and nucleation. Part I: Formulation and one-dimensional characterization , 2015 .

[13]  Kaushik Dayal,et al.  A dynamic phase-field model for structural transformations and twinning: Regularized interfaces with transparent prescription of complex kinetics and nucleation. Part II: Two-dimensional characterization and boundary kinetics , 2015 .

[14]  R. Müller,et al.  An invariant formulation for phase field models in ferroelectrics , 2014 .

[15]  R. Müller,et al.  On the physical interpretation of material parameters in phase field models for ferroelectrics , 2013 .

[16]  H. Alber,et al.  Comparison of a Rapidely Converging Phase Field Model for Interfaces in Solids with the Allen-Cahn Model , 2013 .

[17]  P. N. Lebedev,et al.  TEMPERATURE DEPENDENCE OF THE SHAPE OF THE DOMAIN WALL IN FERROMAGNETIC$ AND FERROELECTRIC$ , 2013 .

[18]  Michael J. Hoffmann,et al.  Universal Polarization Switching Behavior of Disordered Ferroelectrics , 2012 .

[19]  Hiroshi Ishiwara,et al.  Ferroelectric random access memories. , 2012, Journal of nanoscience and nanotechnology.

[20]  Genshui Wang,et al.  Frequency Dependence of Coercive Field in Soft Pb(Zr1−xTix)O3 (0.20 ≤ x ≤ 0.60) Bulk Ceramics , 2011 .

[21]  L. Eric Cross,et al.  Domains in Ferroic Crystals and Thin Films , 2010 .

[22]  M. Gurtin,et al.  The Mechanics and Thermodynamics of Continua , 2010 .

[23]  H. N. Lee,et al.  Nonlinear dynamics of domain-wall propagation in epitaxial ferroelectric thin films. , 2009, Physical review letters.

[24]  A. Rappe,et al.  Nucleation and growth mechanism of ferroelectric domain-wall motion , 2007, Nature.

[25]  H. Alber,et al.  Evolution of Phase Boundaries by Configurational Forces , 2007 .

[26]  Chad M. Landis,et al.  Continuum thermodynamics of ferroelectric domain evolution: Theory, finite element implementation, and application to domain wall pinning , 2007 .

[27]  H. Balke,et al.  A continuum analysis of the driving force of ferroelectric/ferroelastic domain wall motions , 2006 .

[28]  D. Gross,et al.  Driving forces on domain walls in ferroelectric materials and interaction with defects , 2006 .

[29]  Long-Qing Chen,et al.  Three‐Dimensional Computer Simulation of Ferroelectric Domain Formation , 2005 .

[30]  K. Bhattacharya,et al.  A computational model of ferroelectric domains. Part II: grain boundaries and defect pinning , 2005 .

[31]  Kaushik Bhattacharya,et al.  A computational model of ferroelectric domains. Part I: model formulation and domain switching , 2005 .

[32]  Hans-Dieter Alber,et al.  Solutions to a Model with Nonuniformly Parabolic Terms for Phase Evolution Driven by Configurational Forces , 2005, SIAM J. Appl. Math..

[33]  Technology,et al.  Domain wall creep in epitaxial ferroelectric Pb(Zr(0.2)Ti(0.08)O(3) thin films. , 2002, Physical review letters.

[34]  W. Cao,et al.  Coercive field of 0.955Pb(Zn1/3Nb2/3)O3–0.045PbTiO3 single crystal and its frequency dependence , 2002 .

[35]  M. Kamlah,et al.  Ferroelectric and ferroelastic piezoceramics – modeling of electromechanical hysteresis phenomena , 2001 .

[36]  W. Cao,et al.  Size dependence of domain patterns in a constrained ferroelectric system , 2001 .

[37]  L. Chen,et al.  Phase-field model of domain structures in ferroelectric thin films , 2001 .

[38]  Kenji Uchino,et al.  Ferroelectric Devices , 2018 .

[39]  M. Gurtin,et al.  Configurational Forces as Basic Concepts of Continuum Physics , 1999 .

[40]  Thomas Y. Hou,et al.  A Level-Set Approach to the Computation of Twinning and Phase-Transition Dynamics , 1999 .

[41]  Long-Qing Chen,et al.  Computer simulation of 90" ferroelectric domain formation in two-dimensions , 1997 .

[42]  Zhigang Suo,et al.  Nonequilibrium thermodynamics of ferroelectric domain evolution , 1996 .

[43]  Wei Yang,et al.  Computer Simulation of the Dynamics of 180° Ferroelectric Domains , 1995 .

[44]  P. Rosakis,et al.  On the morphology of ferroelectric domains , 1995 .

[45]  Nambu,et al.  Domain formation and elastic long-range interaction in ferroelectric perovskites. , 1994, Physical review. B, Condensed matter.

[46]  Morton E. Gurtin,et al.  Dynamic solid-solid transitions with phase characterized by an order parameter , 1994 .

[47]  Q. Jiang On modeling of phase transformations in ferroelectric materials , 1994 .

[48]  Q. Jiang On the driving traction acting on a surface of discontinuity within a continuum in the presence of electromagnetic fields , 1994 .

[49]  M. Gurtin Thermomechanics of Evolving Phase Boundaries in the Plane , 1993 .

[50]  Cross,et al.  Theory of tetragonal twin structures in ferroelectric perovskites with a first-order phase transition. , 1991, Physical review. B, Condensed matter.

[51]  James K. Knowles,et al.  On the driving traction acting on a surface of strain discontinuity in a continuum , 1990 .

[52]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[53]  L. Truskinovskii,et al.  Dynamics of non-equilibrium phase boundaries in a heat conducting non-linearly elastic medium☆ , 1987 .

[54]  A. Gordon Interface motion in ferroelectrics , 1986 .

[55]  N. Schmidt,et al.  Coercive force and 90° domain wall motion in ferroelectric PLZT ceramics with square hysteresis loops , 1981 .

[56]  G. Arlt,et al.  Domain configuration and equilibrium size of domains in BaTiO3 ceramics , 1980 .

[57]  J. Cahn,et al.  A microscopic theory for antiphase boundary motion and its application to antiphase domain coasening , 1979 .

[58]  H. L. Stadler,et al.  Nucleation and Growth of Ferroelectric Domains in BaTiO3 at Fields from 2 to 450 kV/cm , 1963 .

[59]  R. C. Miller,et al.  Temperature Dependence of the Velocity of Sidewise 180° Domain‐Wall Motion in BaTiO3 , 1960 .

[60]  R. C. Miller,et al.  Motion of 180° Domain Walls in Metal Electroded Barium Titanate Crystals as a Function of Electric Field and Sample Thickness , 1960 .

[61]  G. Weinreich,et al.  Mechanism for the Sidewise Motion of 180° Domain Walls in Barium Titanate , 1960 .

[62]  A. Savage,et al.  Further Experiments on the Sidewise Motion of 180° Domain Walls in BaTi O 3 , 1959 .

[63]  R. C. Miller,et al.  Velocity of Sidewise 180° Domain-Wall Motion in BaTiO 3 as a Function of the Applied Electric Field , 1958 .

[64]  H. Wieder Activation Field and Coercivity of Ferroelectric Barium Titanate , 1957 .

[65]  W. J. Merz Switching Time in Ferroelectric BaTiO3 and Its Dependence on Crystal Thickness , 1956 .

[66]  E. A. Little The dynamic behavior of domain walls in barium titanate , 1954 .

[67]  W. J. Merz,et al.  Domain Formation and Domain Wall Motions in Ferroelectric BaTiO 3 Single Crystals , 1954 .

[68]  Standards on Piezoelectric Crystals, 1949 , 1949, Proceedings of the IRE.

[69]  Lev Davidovich Landau,et al.  ON THE THEORY OF THE DISPERSION OF MAGNETIC PERMEABILITY IN FERROMAGNETIC BODIES , 1935 .