Submodular Percolation

Let $f:{\cal L}\to\mathbb{R}$ be a submodular function on a modular lattice ${\cal L}$; we show that there is a maximal chain ${\cal C}$ in ${\cal L}$ on which the sequence of values of $f$ is minimal among all paths from 0 to 1 in the Hasse diagram of ${\cal L}$, in a certain well-behaved partial order on sequences of reals. One consequence is that the maximum value of $f$ on ${\cal C}$ is minimized over all such paths—i.e., if one can percolate from 0 to 1 on lattice points $X$ with $f(X)\le b$, then one can do so along a maximal chain. The partial order on real sequences is defined by putting $\langle a(0),a(1),\dots,a(m)\rangle\preceq\langle b(0),\dots,b(n)\rangle$ if there is a way to “schedule” the sequences starting at $(a(0),b(0))$ and ending at $(a(m),b(n))$ so that always $a(i)\le b(j)$. Putting ${\bf a}\equiv{\bf b}$ if ${\bf a}\preceq{\bf b}\preceq{\bf a}$, each equivalence class has a unique shortest sequence which we call a worm. We use the properties of worms to give an efficient method to schedule many real sequences in parallel. The results in the paper are applied in a number of other settings, including obstacle navigation, graph search, coordinate percolation, and finding a lost child in a field.

[1]  Alexander Schrijver,et al.  A Combinatorial Algorithm Minimizing Submodular Functions in Strongly Polynomial Time , 2000, J. Comb. Theory B.

[2]  L. Lovász,et al.  Geometric Algorithms and Combinatorial Optimization , 1981 .

[3]  H. Narayanan Submodular functions and electrical networks , 1997 .

[4]  Christos H. Papadimitriou,et al.  Searching and Pebbling , 1986, Theor. Comput. Sci..

[5]  M. Karonski Collisions among Random Walks on a Graph , 1993 .

[6]  Robin Thomas,et al.  Quickly excluding a forest , 1991, J. Comb. Theory, Ser. B.

[7]  Boting Yang,et al.  Sweeping Graphs with Large Clique Number , 2004, ISAAC.

[8]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[9]  Alan J. Hoffman,et al.  On greedy algorithms, partially ordered sets, and submodular functions , 2003, IBM J. Res. Dev..

[10]  Béla Bollobás,et al.  Dependent percolation in two dimensions , 2000 .

[11]  Péter Gács The Clairvoyant Demon Has A Hard Task , 2000, Comb. Probab. Comput..

[12]  P. Winkler,et al.  The Combinatorics of Coordinate Percolation , 2007 .

[13]  Paul D. Seymour,et al.  Monotonicity in Graph Searching , 1991, J. Algorithms.

[14]  T. D. Parsons,et al.  Pursuit-evasion in a graph , 1978 .

[15]  Paul D. Seymour,et al.  Graph minors. X. Obstructions to tree-decomposition , 1991, J. Comb. Theory, Ser. B.

[16]  Péter Gács Compatible sequences and a slow Winkler percolation , 2001, STOC '01.

[17]  H. Poincaré,et al.  Percolation ? , 1982 .

[18]  Christos H. Papadimitriou,et al.  Interval graphs and seatching , 1985, Discret. Math..

[19]  Andrea S. LaPaugh,et al.  Recontamination does not help to search a graph , 1993, JACM.

[20]  Peter Winkler,et al.  On a Form of Coordinate Percolation , 2008, Comb. Probab. Comput..

[21]  Nicolas Nisse,et al.  Monotonicity of non-deterministic graph searching , 2007, Theor. Comput. Sci..

[22]  P. Winkler Dependent percolation and colliding random walks , 2000, Random Struct. Algorithms.

[23]  Dimitrios M. Thilikos,et al.  An annotated bibliography on guaranteed graph searching , 2008, Theor. Comput. Sci..

[24]  Christos H. Papadimitriou,et al.  The complexity of searching a graph , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[25]  Robin Thomas,et al.  Graph Searching and a Min-Max Theorem for Tree-Width , 1993, J. Comb. Theory, Ser. B.

[26]  Satoru Fujishige,et al.  Submodular functions and optimization , 1991 .

[27]  Nicolas Nisse,et al.  Monotony properties of connected visible graph searching , 2008, Inf. Comput..