Multiple Classifier Fusion Performance in Networked Stochastic Vector Quantisers

We detail an exploratory experiment aimed at determining the performance of stochastic vector quantisation as a purely fusion methodology, in contrast to its performance as a composite classification/fusion mechanism. To achieve this we obtain an initial pattern space for which a simulated PDF is generated: a well-factored SVQ classifier then acts as a composite classifier/classifier fusion system in order to provide an overall representation rate. This performance is then contrasted with that of the individual classifiers (constituted by the factored code-vectors) acting in combination via conventional combination mechanisms. In this way, we isolate the performance of networked-SVQs as a purely combinatory mechanism for the base classifiers.