Novel inductive decoupling technique for flexible transceiver arrays of monolithic transmission line resonators

This article presents a novel inductive decoupling technique for form‐fitting coil arrays of monolithic transmission line resonators, which target biomedical applications requiring high signal‐to‐noise ratio over a large field of view to image anatomical structures varying in size and shape from patient to patient.

[1]  Robert Turner,et al.  Fast MRI coil analysis based on 3-D electromagnetic and RF circuit co-simulation. , 2009, Journal of magnetic resonance.

[2]  Michael B. Smith,et al.  Exploring the limits of RF shimming for high‐field MRI of the human head , 2006, Magnetic resonance in medicine.

[3]  G. Bodenhausen,et al.  Principles of nuclear magnetic resonance in one and two dimensions , 1987 .

[4]  David I. Hoult,et al.  Use of mutually inductive coupling in probe design , 2002 .

[5]  C. Collins,et al.  Calculation of radiofrequency electromagnetic fields and their effects in MRI of human subjects , 2011, Magnetic resonance in medicine.

[6]  P. Boesiger,et al.  Specific coil design for SENSE: A six‐element cardiac array , 2001, Magnetic resonance in medicine.

[7]  W. Manning,et al.  Simultaneous acquisition of spatial harmonics (SMASH): Fast imaging with radiofrequency coil arrays , 1997, Magnetic resonance in medicine.

[8]  Joël Mispelter,et al.  NMR Probeheads for Biophysical and Biomedical Experiments: Theoretical Principles and Practical Guidelines , 2006 .

[9]  J. Duyn,et al.  Design of a SENSE‐optimized high‐sensitivity MRI receive coil for brain imaging , 2002, Magnetic resonance in medicine.

[10]  D. Sodickson,et al.  Comprehensive quantification of signal‐to‐noise ratio and g‐factor for image‐based and k‐space‐based parallel imaging reconstructions , 2008, Magnetic resonance in medicine.

[11]  Peter Börnert,et al.  A specific absorption rate prediction concept for parallel transmission MR , 2012, Magnetic resonance in medicine.

[12]  L Darrasse,et al.  Optimization of NMR receiver bandwidth by inductive coupling. , 1992, Magnetic resonance imaging.

[13]  J. B. Kneeland,et al.  High-resolution MR imaging with local coils. , 1989, Radiology.

[14]  L Darrasse,et al.  Perspectives with cryogenic RF probes in biomedical MRI. , 2003, Biochimie.

[15]  S. Kan,et al.  Multigap parallel‐plate bracelet resonator frequency determination and applications , 1994 .

[16]  P. Roemer,et al.  The NMR phased array , 1990, Magnetic resonance in medicine.

[17]  Mark A. Griswold,et al.  NMR probeheads for In Vivo applications , 2000 .

[18]  Thomas Neuberger,et al.  Radiofrequency coils for magnetic resonance microscopy , 2009, NMR in biomedicine.

[19]  Jean-Christophe Ginefri,et al.  Quick measurement of nuclear magnetic resonance coil sensitivity with a single-loop probe , 1999 .

[20]  Jing Yuan,et al.  Interconnecting L/C components for decoupling and its application to low‐field open MRI array , 2007 .

[21]  E. Moser,et al.  In vivo MR imaging of the human skin at subnanoliter resolution using a superconducting surface coil at 1.5 tesla , 2015, Journal of magnetic resonance imaging : JMRI.

[22]  Yudong Zhu,et al.  Parallel excitation with an array of transmit coils , 2004, Magnetic resonance in medicine.

[23]  Hervé Saint-Jalmes,et al.  Small-animal MRI: signal-to-noise ratio comparison at 7 and 1.5 T with multiple-animal acquisition strategies , 2006, Magnetic Resonance Materials in Physics, Biology and Medicine.

[24]  Xu Chu,et al.  Ultra‐low output impedance RF power amplifier for parallel excitation , 2009, Magnetic resonance in medicine.

[25]  Ewald Moser,et al.  Ultra-high-field magnetic resonance: Why and when? , 2010, World journal of radiology.

[26]  D. Gadian,et al.  Mapping of metabolites in whole animals by 31P NMR using surface coils , 1980, Nature.

[27]  Stéphane Serfaty,et al.  Multi‐turn split‐conductor transmission‐line resonators , 1997, Magnetic resonance in medicine.

[28]  Martin Blaimer,et al.  General formulation for quantitative G‐factor calculation in GRAPPA reconstructions , 2009, Magnetic resonance in medicine.

[29]  P. Börnert,et al.  Transmit SENSE , 2003, Magnetic resonance in medicine.

[30]  P. Boesiger,et al.  SENSE: Sensitivity encoding for fast MRI , 1999, Magnetic resonance in medicine.

[31]  S Clare,et al.  Compensating for B(1) inhomogeneity using active transmit power modulation. , 2001, Magnetic resonance imaging.

[32]  T. Grist,et al.  Radiofrequency current source (RFCS) drive and decoupling technique for parallel transmit arrays using a high‐power metal oxide semiconductor field‐effect transistor (MOSFET) , 2009, Magnetic resonance in medicine.

[33]  S. Kan,et al.  Parallel‐plate split‐conductor surface coil: Analysis and design , 1988, Magnetic resonance in medicine.

[34]  Allen Taflove,et al.  Finite-difference time-domain modeling of curved surfaces (EM scattering) , 1992 .

[35]  B. Querleux,et al.  In vivo high-resolution MR imaging of the skin in a whole-body system at 1.5 T. , 1990, Radiology.

[36]  J. Grandchamp,et al.  Characterization of flexible RF microcoils dedicated to local MRI , 2007 .

[37]  Ewald Moser,et al.  7‐T MR—from research to clinical applications? , 2012, NMR in biomedicine.

[38]  H P Hetherington,et al.  4 T Actively detuneable double-tuned 1H/31P head volume coil and four-channel 31P phased array for human brain spectroscopy. , 2006, Journal of magnetic resonance.

[39]  Elimination of mutual inductance in NMR phased arrays: the paddle design revisited. , 2012, Journal of magnetic resonance.

[40]  C-N. Chen,et al.  Biomedical magnetic resonance technology , 1989 .