Restricted Generative Projection for One-Class Classification and Anomaly Detection

We present a simple framework for one-class classification and anomaly detection. The core idea is to learn a mapping to transform the unknown distribution of training (normal) data to a known target distribution. Crucially, the target distribution should be sufficiently simple, compact, and informative. The simplicity is to ensure that we can sample from the distribution easily, the compactness is to ensure that the decision boundary between normal data and abnormal data is clear and reliable, and the informativeness is to ensure that the transformed data preserve the important information of the original data. Therefore, we propose to use truncated Gaussian, uniform in hypersphere, uniform on hypersphere, or uniform between hyperspheres, as the target distribution. We then minimize the distance between the transformed data distribution and the target distribution while keeping the reconstruction error for the original data small enough. Comparative studies on multiple benchmark datasets verify the effectiveness of our methods in comparison to baselines.

[1]  Jicong Fan,et al.  Perturbation Learning Based Anomaly Detection , 2022, NeurIPS.

[2]  Khoa T. Phan,et al.  Generative and Contrastive Self-Supervised Learning for Graph Anomaly Detection , 2021, IEEE Transactions on Knowledge and Data Engineering.

[3]  Srikanta J. Bedathur,et al.  Fast One-class Classification using Class Boundary-preserving Random Projections , 2021, Knowledge Discovery and Data Mining.

[4]  Fei Xiong,et al.  Anomaly Detection in Dynamic Graphs via Transformer , 2021, IEEE Transactions on Knowledge and Data Engineering.

[5]  Pheng-Ann Heng,et al.  Learning Semantic Context from Normal Samples for Unsupervised Anomaly Detection , 2021, AAAI.

[6]  F. Park,et al.  Autoencoding Under Normalization Constraints , 2021, ICML.

[7]  Maja R. Rudolph,et al.  Neural Transformation Learning for Deep Anomaly Detection Beyond Images , 2021, ICML.

[8]  Yanfei Zhong,et al.  Auto-AD: Autonomous Hyperspectral Anomaly Detection Network Based on Fully Convolutional Autoencoder , 2021, IEEE Transactions on Geoscience and Remote Sensing.

[9]  G. Carneiro,et al.  Deep One-Class Classification via Interpolated Gaussian Descriptor , 2021, AAAI.

[10]  Fabrizio Falchi,et al.  MOCCA: Multilayer One-Class Classification for Anomaly Detection , 2020, IEEE Transactions on Neural Networks and Learning Systems.

[11]  Thomas G. Dietterich,et al.  A Unifying Review of Deep and Shallow Anomaly Detection , 2020, Proceedings of the IEEE.

[12]  S. Jha,et al.  A General Framework For Detecting Anomalous Inputs to DNN Classifiers , 2020, ICML.

[13]  Marius Kloft,et al.  Explainable Deep One-Class Classification , 2020, ICLR.

[14]  Robert A. Vandermeulen,et al.  Rethinking Assumptions in Deep Anomaly Detection , 2020, ArXiv.

[15]  Yedid Hoshen,et al.  Classification-Based Anomaly Detection for General Data , 2020, ICLR.

[16]  Harsha Vardhan Simhadri,et al.  DROCC: Deep Robust One-Class Classification , 2020, ICML.

[17]  Junping Du,et al.  Anomaly Detection Using Local Kernel Density Estimation and Context-Based Regression , 2020, IEEE Transactions on Knowledge and Data Engineering.

[18]  Alexander Binder,et al.  Deep Semi-Supervised Anomaly Detection , 2019, ICLR.

[19]  Ramesh Nallapati,et al.  OCGAN: One-Class Novelty Detection Using GANs With Constrained Latent Representations , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[20]  Thomas Brox,et al.  Anomaly Detection With Multiple-Hypotheses Predictions , 2018, ICML.

[21]  Thomas G. Dietterich,et al.  Deep Anomaly Detection with Outlier Exposure , 2018, ICLR.

[22]  Marius Kloft,et al.  Image Anomaly Detection with Generative Adversarial Networks , 2018, ECML/PKDD.

[23]  Matthijs Douze,et al.  Deep Clustering for Unsupervised Learning of Visual Features , 2018, ECCV.

[24]  Stanislav Pidhorskyi,et al.  Generative Probabilistic Novelty Detection with Adversarial Autoencoders , 2018, NeurIPS.

[25]  Alexander Binder,et al.  Deep One-Class Classification , 2018, ICML.

[26]  Ran El-Yaniv,et al.  Deep Anomaly Detection Using Geometric Transformations , 2018, NeurIPS.

[27]  Bo Zong,et al.  Deep Autoencoding Gaussian Mixture Model for Unsupervised Anomaly Detection , 2018, ICLR.

[28]  Vishal M. Patel,et al.  Learning Deep Features for One-Class Classification , 2018, IEEE Transactions on Image Processing.

[29]  Liwei Wang,et al.  The Expressive Power of Neural Networks: A View from the Width , 2017, NIPS.

[30]  Roland Vollgraf,et al.  Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms , 2017, ArXiv.

[31]  Georg Langs,et al.  Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery , 2017, IPMI.

[32]  Georg Langs,et al.  Identifying and Categorizing Anomalies in Retinal Imaging Data , 2016, ArXiv.

[33]  Lovekesh Vig,et al.  LSTM-based Encoder-Decoder for Multi-sensor Anomaly Detection , 2016, ArXiv.

[34]  R. Zemel,et al.  Generative Moment Matching Networks , 2015, ICML.

[35]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[36]  Aaron C. Courville,et al.  Generative Adversarial Nets , 2014, NIPS.

[37]  Max Welling,et al.  Auto-Encoding Variational Bayes , 2013, ICLR.

[38]  Marco Cuturi,et al.  Sinkhorn Distances: Lightspeed Computation of Optimal Transport , 2013, NIPS.

[39]  Bernhard Schölkopf,et al.  A Kernel Two-Sample Test , 2012, J. Mach. Learn. Res..

[40]  Chandan Srivastava,et al.  Support Vector Data Description , 2011 .

[41]  VARUN CHANDOLA,et al.  Anomaly detection: A survey , 2009, CSUR.

[42]  Zhi-Hua Zhou,et al.  Isolation Forest , 2008, 2008 Eighth IEEE International Conference on Data Mining.

[43]  Yoshua Bengio,et al.  Extracting and composing robust features with denoising autoencoders , 2008, ICML '08.

[44]  Geoffrey E. Hinton,et al.  Reducing the Dimensionality of Data with Neural Networks , 2006, Science.

[45]  Bernhard Schölkopf,et al.  Estimating the Support of a High-Dimensional Distribution , 2001, Neural Computation.

[46]  Hans-Peter Kriegel,et al.  LOF: identifying density-based local outliers , 2000, SIGMOD '00.

[47]  Bernhard Schölkopf,et al.  Support Vector Method for Novelty Detection , 1999, NIPS.

[48]  Allan Pinkus,et al.  Approximation theory of the MLP model in neural networks , 1999, Acta Numerica.

[49]  Richard Sinkhorn,et al.  Concerning nonnegative matrices and doubly stochastic matrices , 1967 .

[50]  G. Marsaglia Generating a Variable from the Tail of the Normal Distribution , 1964 .

[51]  L. V. Kantorovich,et al.  Mathematical Methods of Organizing and Planning Production , 1960 .

[52]  M. Rosenblatt Remarks on Some Nonparametric Estimates of a Density Function , 1956 .

[53]  Lior Wolf,et al.  Anomaly Detection for Tabular Data with Internal Contrastive Learning , 2022, ICLR.

[54]  Changdong Wang,et al.  Hybrid-Order Anomaly Detection on Attributed Networks , 2023, IEEE Transactions on Knowledge and Data Engineering.

[55]  Jingyuan Wang,et al.  GAN-Based Anomaly Detection for Multivariate Time Series Using Polluted Training Set , 2021, IEEE Transactions on Knowledge and Data Engineering.

[56]  Bing Liu,et al.  HRN: A Holistic Approach to One Class Learning , 2020, NeurIPS.

[57]  Yaoliang Yu,et al.  Multivariate Triangular Quantile Maps for Novelty Detection , 2019, NeurIPS.

[58]  Alex Krizhevsky,et al.  Learning Multiple Layers of Features from Tiny Images , 2009 .