Discrete-time compensation algorithm for hysteresis in piezoceramic actuators

A discrete-time Preisach model that captures hysteresis in a piezoceramic actuator is developed. The model is implemented using a numerical technique that is based on first order reversal functions and is presented in a recursive form that is amenable for real-time implementation. The first order reversal functions are experimentally obtained using a piezoceramic actuator in a stacked form. The development model shows good agreement with actual measured data. A hysteresis compensation scheme based on the developed discrete-time Preisach model is also developed and used in order to obtain a linear voltage-to-displacement relationship.