Predictive Analytics for Fraud Detection

[1]  Johan A. K. Suykens,et al.  Benchmarking Least Squares Support Vector Machine Classifiers , 2004, Machine Learning.

[2]  Bart Baesens,et al.  Decompositional Rule Extraction from Support Vector Machines by Active Learning , 2009, IEEE Transactions on Knowledge and Data Engineering.

[3]  Bart Baesens,et al.  Comprehensible Credit Scoring Models Using Rule Extraction from Support Vector Machines , 2007, Eur. J. Oper. Res..

[4]  Bart Baesens,et al.  Rule Extraction from Minimal Neural Networks for Credit Card Screening , 2011, Int. J. Neural Syst..

[5]  Nitesh V. Chawla,et al.  SMOTE: Synthetic Minority Over-sampling Technique , 2002, J. Artif. Intell. Res..

[6]  J. Suykens,et al.  Linear and Non-linear Credit Scoring by Combining Logistic Regression and Support Vector Machines , 2006 .

[7]  Jan Vanthienen,et al.  50 years of data mining and OR: upcoming trends and challenges , 2009, J. Oper. Res. Soc..

[8]  Bart Baesens,et al.  Bayesian neural network learning for repeat purchase modelling in direct marketing , 2002, Eur. J. Oper. Res..

[9]  Bart Baesens,et al.  Failure prediction with self organizing maps , 2006, Expert Syst. Appl..

[10]  Bart Baesens,et al.  Using Neural Network Rule Extraction and Decision Tables for Credit - Risk Evaluation , 2003, Manag. Sci..

[11]  J. Hanley,et al.  The meaning and use of the area under a receiver operating characteristic (ROC) curve. , 1982, Radiology.

[12]  B. Efron Bootstrap Methods: Another Look at the Jackknife , 1979 .

[13]  Jacek M. Zurada,et al.  Guest Editorial White Box Nonlinear Prediction Models , 2011, IEEE Transactions on Neural Networks.

[14]  Marko Bajec,et al.  An expert system for detecting automobile insurance fraud using social network analysis , 2011, Expert Syst. Appl..

[15]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[16]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[17]  G. V. Kass An Exploratory Technique for Investigating Large Quantities of Categorical Data , 1980 .

[18]  David J. Hand,et al.  A Simple Generalisation of the Area Under the ROC Curve for Multiple Class Classification Problems , 2001, Machine Learning.

[19]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1997, EuroCOLT.

[20]  Johan A. K. Suykens,et al.  Benchmarking state-of-the-art classification algorithms for credit scoring , 2003, J. Oper. Res. Soc..

[21]  Bart Baesens,et al.  Data Mining Techniques for Software Effort Estimation: A Comparative Study , 2012, IEEE Transactions on Software Engineering.

[22]  O. Mangasarian Linear and Nonlinear Separation of Patterns by Linear Programming , 1965 .

[23]  Vadlamani Ravi,et al.  Detection of financial statement fraud and feature selection using data mining techniques , 2011, Decis. Support Syst..

[24]  Mark A. Girolami,et al.  Employing Latent Dirichlet Allocation for fraud detection in telecommunications , 2007, Pattern Recognit. Lett..

[25]  Siddhartha Bhattacharyya,et al.  Data mining for credit card fraud: A comparative study , 2011, Decis. Support Syst..

[26]  Niall M. Adams,et al.  Transaction aggregation as a strategy for credit card fraud detection , 2009, Data Mining and Knowledge Discovery.

[27]  Francisco Herrera,et al.  Analysis of preprocessing vs. cost-sensitive learning for imbalanced classification. Open problems on intrinsic data characteristics , 2012, Expert Syst. Appl..

[28]  Marco Saerens,et al.  Adjusting the Outputs of a Classifier to New a Priori Probabilities: A Simple Procedure , 2002, Neural Computation.

[29]  Rudy Setiono,et al.  A note on knowledge discovery using neural networks and its application to credit card screening , 2009, Eur. J. Oper. Res..

[30]  Kai Ming Ting,et al.  An Instance-weighting Method to Induce Cost-sensitive Trees , 2001 .