Size control and registration of nano-structured thin films by cross- units.

Thermoset thin films via directed self-assembly, where benzocyclobutene (BCB) groups are incorporated selectively into the one block, have been prepared from cross-linkable block copolymers in a simple process, which allows size controllability and the registration of oriented microdomains in multi-layer applications.

[1]  Yong Keng Goh,et al.  Versatile synthetic approach to reversible crosslinked polystyrene networks via RAFT polymerization , 2007 .

[2]  J. Köhler,et al.  Towards nanoporous membranes based on ABC triblock terpolymers. , 2007, Small.

[3]  Craig J. Hawker,et al.  Surface Modification with Cross-Linked Random Copolymers: Minimum Effective Thickness , 2007 .

[4]  S. Yang,et al.  Nondestructive quantitative synchrotron grazing incidence x-ray scattering analysis of cylindrical nanostructures in supported thin films. , 2007 .

[5]  A. Knoll,et al.  Nanoscaling of microdomain spacings in thin films of cylinder-forming block copolymers. , 2007, Nano letters.

[6]  Todd Emrick,et al.  Self‐Assembly of Nanoparticle–Copolymer Mixtures: A Kinetic Point of View , 2007 .

[7]  J. Buriak,et al.  Block copolymer templated etching on silicon. , 2007, Nano letters.

[8]  Ullrich Steiner,et al.  Freestanding nanowire arrays from soft-etch block copolymer templates. , 2006, Soft matter.

[9]  T. Russell,et al.  Using a ferrocenylsilane-based block copolymer as a template to produce nanotextured Ag surfaces: uniformly enhanced surface enhanced Raman scattering active substrates , 2006 .

[10]  C. Hawker,et al.  Facile syntheses of surface‐functionalized micelles and shell cross‐linked nanoparticles , 2006 .

[11]  Jin Kon Kim,et al.  An optical waveguide study on the nanopore formation in block copolymer/homopolymer thin films by selective solvent swelling. , 2006, The journal of physical chemistry. B.

[12]  Agus Haryono,et al.  Controlled arrangement of nanoparticle arrays in block-copolymer domains. , 2006, Small.

[13]  Craig J Hawker,et al.  A Generalized Approach to the Modification of Solid Surfaces , 2005, Science.

[14]  Ho-Cheol Kim,et al.  Covalent stabilization of nanostructures: Robust block copolymer templates from novel thermoreactive systems , 2005 .

[15]  Jin Kon Kim,et al.  Precise Control of Nanopore Size in Thin Film Using Mixtures of Asymmetric Block Copolymer and Homopolymer , 2003 .

[16]  Dong Ha Kim,et al.  Volume Contractions Induced by Crosslinking: A Novel Route to Nanoporous Polymer Films , 2003 .

[17]  K. Guarini,et al.  Process integration of self-assembled polymer templates into silicon nanofabrication , 2002 .

[18]  David S. Germack,et al.  A facile approach to architecturally defined nanoparticles via intramolecular chain collapse. , 2002, Journal of the American Chemical Society.

[19]  E. Harth,et al.  Production of crosslinked, hollow nanoparticles by surface‐initiated living free‐radical polymerization , 2002 .

[20]  Joy Y. Cheng,et al.  Double textured cylindrical block copolymer domains via directional solidification on a topographically patterned substrate , 2001 .

[21]  Ting Xu,et al.  The influence of molecular weight on nanoporous polymer films , 2001 .

[22]  C. Hawker,et al.  Nanodomain control in copolymer thin films , 1998, Nature.

[23]  Craig J. Hawker,et al.  Ordered diblock copolymer films on random copolymer brushes , 1997 .

[24]  Christopher Harrison,et al.  Block copolymer lithography: Periodic arrays of ~1011 holes in 1 square centimeter , 1997 .

[25]  C. Hawker,et al.  Controlling Polymer-Surface Interactions with Random Copolymer Brushes , 1997, Science.

[26]  Nan Yao,et al.  Nanolithographic templates from diblock copolymer thin films , 1996 .

[27]  Ian W. Hamley,et al.  The physics of block copolymers , 1998 .