Inequalities associated with the inversion of elastic stress-deformation relations and their implications

[1]  S. Flügge,et al.  Handbuch der Physik , 1908, Nature.

[2]  R. Ogden Large deformation isotropic elasticity – on the correlation of theory and experiment for incompressible rubberlike solids , 1972, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[3]  B. D. Veubeke,et al.  A new variational principle for finite elastic displacements , 1972 .

[4]  R. J. Knops,et al.  Trends in applications of pure mathematics to mechanics : a collection of invited papers presented at a symposium at Heriot-Watt University in September 1979 , 1978 .

[5]  D. C. Drucker,et al.  Mechanics of Incremental Deformation , 1965 .

[6]  R. Hill Eigenmodal deformations in elastic/plastic continua , 1967 .

[7]  R. Ogden,et al.  A note on variational theorems in non-linear elastostatics , 1975, Mathematical Proceedings of the Cambridge Philosophical Society.

[8]  R. Hill,et al.  On constitutive inequalities for simple materials—I , 1968 .

[9]  L. Treloar,et al.  The properties of rubber in pure homogeneous strain , 1975 .

[10]  Robert L. Hill,et al.  Constitutive inequalities for isotropic elastic solids under finite strain , 1970, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[11]  A comprehensive constitutive inequality in finite elastic strain , 1975 .

[12]  R. Hill On the elasticity and stability of perfect crystals at finite strain , 1975, Mathematical Proceedings of the Cambridge Philosophical Society.

[13]  W. T. Koiter On the Principle of Stationary Complementary Energy in the Nonlinear Theory of Elasticity , 1973 .

[14]  Alan N. Gent,et al.  Internal rupture of bonded rubber cylinders in tension , 1961, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.