Global cluster geometry optimization by a phenotype algorithm with Niches: Location of elusive minima, and low‐order scaling with cluster size

The problem of global geometry optimization of clusters is addressed with a phenotype variant of the method of genetic algorithms, with several novel performance enhancements. The resulting algorithm is applied to Lennard–Jones clusters as benchmark system, with up to 150 atoms. The well‐known, difficult cases involving nonicosahedral global minima can be treated reliably using the concept of niches. The scaling of computer time with cluster size is approximately cubic, which is crucial for future applications to much larger clusters. © 1999 John Wiley & Sons, Inc. J Comput Chem 20: 1752–1759, 1999

[1]  L. Wille,et al.  Computational complexity of the ground-state determination of atomic clusters , 1985 .

[2]  D. Clary,et al.  Structure of Water Clusters. The Contribution of Many-Body Forces, Monomer Relaxation, and Vibrational Zero-Point Energy , 1996 .

[3]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[4]  J. Doye,et al.  Global Optimization by Basin-Hopping and the Lowest Energy Structures of Lennard-Jones Clusters Containing up to 110 Atoms , 1997, cond-mat/9803344.

[5]  Christopher M. Dobson,et al.  Proteinfaltung aus theoretischer und experimenteller Sicht , 1998 .

[6]  Steven Hobday,et al.  Optimisation of carbon cluster geometry using a genetic algorithm , 1997 .

[7]  Mark A. Miller,et al.  Archetypal energy landscapes , 1998, Nature.

[8]  U. Landman,et al.  Genetic Algorithms for Structural Cluster Optimization , 1998 .

[9]  Jongseob Kim,et al.  Structures, binding energies, and spectra of isoenergetic water hexamer clusters: Extensive ab initio studies , 1998 .

[10]  Melanie Mitchell,et al.  An introduction to genetic algorithms , 1996 .

[11]  Karo Michaelian A symbiotic algorithm for finding the lowest energy isomers of large clusters and molecules , 1998 .

[12]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[13]  Yong L. Xiao,et al.  Genetic algorithm: a new approach to the prediction of the structure of molecular clusters , 1993 .

[14]  Bicai Pan,et al.  Structures of medium-sized silicon clusters , 1998, Nature.

[15]  Arnold Neumaier,et al.  Molecular Modeling of Proteins and Mathematical Prediction of Protein Structure , 1997, SIAM Rev..

[16]  B. W. V. D. Waal Stability of face‐centered cubic and icosahedral Lennard‐Jones clusters , 1989 .

[17]  G. W. Greenwood Revisiting the Complexity of Finding Globally Minimum Energy Configurations in Atomic Clusters , 1999 .

[18]  David S. Goodsell,et al.  Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function , 1998 .

[19]  J. Northby Structure and binding of Lennard‐Jones clusters: 13≤N≤147 , 1987 .

[20]  Bernd Hartke,et al.  Global geometry optimization of (Ar)n and B(Ar)n clusters using a modified genetic algorithm , 1996 .

[21]  Bernd Hartke,et al.  Improved intermolecular water potential from global geometry optimization of small water clusters using local MP2 , 1998 .

[22]  R. Stephen Berry,et al.  Clusters: Tools for Studying Potential Surfaces and Their Connection to Molecular Dynamics , 1994 .

[23]  K. Ho,et al.  Structural optimization of Lennard-Jones clusters by a genetic algorithm , 1996 .

[24]  R. Tenne,et al.  Nanoparticles of Layered Compounds with Hollow Cage Structures (Inorganic Fullerene-Like Structures)† , 1998 .

[25]  Jorge Nocedal,et al.  On the limited memory BFGS method for large scale optimization , 1989, Math. Program..

[26]  Lucjan Piela,et al.  Smoothing techniques of global optimization: Distance scaling method in searches for most stable Lennard–Jones atomic clusters , 1997 .

[27]  J. D. Doll,et al.  A semi-empirical potential for simulations of transition metal clusters: Minima and isomers of Nin (n=2–13) and their hydrides , 1998 .

[28]  J. Durup,et al.  On “Levinthal paradox” and the theory of protein folding , 1998 .

[29]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[30]  J. Onuchic,et al.  Theory of protein folding: the energy landscape perspective. , 1997, Annual review of physical chemistry.

[31]  Richard W. Siegel,et al.  Nanostructured materials -mind over matter- , 1993 .

[32]  M. R. Lemes,et al.  Combining genetic algorithm and simulated annealing: A molecular geometry optimization study , 1998 .

[33]  Wayne Pullan,et al.  Genetic operators for the atomic cluster problem , 1997 .

[34]  D. Clary,et al.  Characterization of a cage form of the water hexamer , 1996, Nature.

[35]  Richard J. Saykally,et al.  Terahertz Laser Vibration−Rotation Tunneling Spectroscopy and Dipole Moment of a Cage Form of the Water Hexamer , 1997 .

[36]  T. P. Martin Shells of atoms , 1996 .

[37]  J. Doye,et al.  THE DOUBLE-FUNNEL ENERGY LANDSCAPE OF THE 38-ATOM LENNARD-JONES CLUSTER , 1998, cond-mat/9808265.

[38]  Joseph C. Culberson,et al.  On the Futility of Blind Search: An Algorithmic View of No Free Lunch , 1998, Evolutionary Computation.

[39]  J. Farges,et al.  Noncrystalline structure of argon clusters. I. Polyicosahedral structure of ArN clusters, 20 , 1983 .

[40]  M. Hoare,et al.  Physical cluster mechanics: Statics and energy surfaces for monatomic systems , 1971 .

[41]  B. W. V. D. Waal No evidence for size-dependent icosahedral --> fcc structural transition in rare-gas clusters. , 1996 .

[42]  M. R. Hoare,et al.  Morphology and statistical statics of simple microclusters , 1983 .

[43]  B. Hartke Global geometry optimization of clusters using genetic algorithms , 1993 .

[44]  M. Swihart,et al.  Thermochemistry and Kinetics of Silicon Hydride Cluster Formation during Thermal Decomposition of Silane , 1999 .

[45]  I. Ford,et al.  Gas-to-particle conversion in the atmosphere: II. Analytical models of nucleation bursts , 1999 .

[46]  James C. Ianni,et al.  Study of the Hydrates of H2SO4 Using Density Functional Theory , 1998 .

[47]  S. Subramoney Novel Nanocarbons—Structure, Properties, and Potential Applications , 1998 .

[48]  Jonathan D. Hirst,et al.  Assessing search strategies for flexible docking , 1998 .

[49]  R. Turco,et al.  The possible role of organics in the formation and evolution of ultrafine aircraft particles , 1999 .

[50]  L. Piela,et al.  Molecular Dynamics on Deformed Potential Energy Hypersurfaces , 1995 .

[51]  H. Scheraga,et al.  Monte Carlo-minimization approach to the multiple-minima problem in protein folding. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[52]  Ho,et al.  Molecular geometry optimization with a genetic algorithm. , 1995, Physical review letters.

[53]  Andersen,et al.  10(6)-particle molecular-dynamics study of homogeneous nucleation of crystals in a supercooled atomic liquid. , 1990, Physical review. B, Condensed matter.

[54]  Guoliang Xue Improvement on the northby algorithm for molecular conformation: Better solutions , 1994, J. Glob. Optim..