Giant photovoltaic response in band engineered ferroelectric perovskite

[1]  Y. Tokura,et al.  Shift current photovoltaic effect in a ferroelectric charge-transfer complex , 2017, Nature Communications.

[2]  Jinsong Huang,et al.  Understanding the physical properties of hybrid perovskites for photovoltaic applications , 2017 .

[3]  C. Tu,et al.  Remarkably enhanced photovoltaic effects and first-principles calculations in neodymium doped BiFeO3 , 2017, Scientific Reports.

[4]  V. Fridkin,et al.  Mesoscopic Free Path of Nonthermalized Photogenerated Carriers in a Ferroelectric Insulator. , 2017, Physical review letters.

[5]  Alessia Polemi,et al.  Erratum: Power conversion efficiency exceeding the Shockley–Queisser limit in a ferroelectric insulator , 2016, Nature Photonics.

[6]  L. Tan,et al.  Shift current bulk photovoltaic effect in polar materials—hybrid and oxide perovskites and beyond , 2016 .

[7]  G. Kresse,et al.  Calculation of the magnetic anisotropy with projected-augmented-wave methodology and the case study of disordered Fe 1 -x Co x alloys , 2016 .

[8]  A. Polman,et al.  Photovoltaic materials: Present efficiencies and future challenges , 2016, Science.

[9]  Y. Noguchi,et al.  Giant photovoltaic effect of ferroelectric domain walls in perovskite single crystals , 2015, Scientific Reports.

[10]  F. Chang,et al.  Origin of photovoltaic effect in superconducting YBa2Cu3O6.96 ceramics , 2015, Scientific Reports.

[11]  Fenggong Wang,et al.  First-principles calculation of the bulk photovoltaic effect in KNbO 3 and (K,Ba)(Ni,Nb) O 3 − δ , 2015, 1503.00684.

[12]  Qingfeng Dong,et al.  Giant switchable photovoltaic effect in organometal trihalide perovskite devices. , 2015, Nature materials.

[13]  A. L. Tolstikhina,et al.  Giant bulk photovoltaic effect in thin ferroelectricBaTiO3films , 2014 .

[14]  F. Zheng,et al.  First-Principles Calculation of the Bulk Photovoltaic Effect in CH3NH3PbI3 and CH3NH3PbI3−xClx , 2014 .

[15]  Liyan Wu,et al.  Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials , 2013, Nature.

[16]  Guifu Zou,et al.  Enlarging photovoltaic effect: combination of classic photoelectric and ferroelectric photovoltaic effects , 2013, Scientific Reports.

[17]  Xiao-hua Liu,et al.  Low temperature solvothermal synthesis, optical and electric properties of tetragonal phase BaTiO3 nanocrystals using BaCO3 powder , 2013 .

[18]  A. Sasaki,et al.  Synthesis and piezoelectric properties of Li-doped BaTiO3 by a solvothermal approach , 2013 .

[19]  Chongyin Yang,et al.  New high Tc multiferroics KBiFe2O5 with narrow band gap and promising photovoltaic effect , 2013, Scientific Reports.

[20]  N. Park,et al.  Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% , 2012, Scientific Reports.

[21]  V. Harris,et al.  Enhancement of Photocurrent in Ferroelectric Films Via the Incorporation of Narrow Bandgap Nanoparticles , 2012, Advanced materials.

[22]  S. Young,et al.  First principles calculation of the shift current photovoltaic effect in ferroelectrics. , 2012, Physical review letters.

[23]  Chen Li,et al.  Perylene Imides for Organic Photovoltaics: Yesterday, Today, and Tomorrow , 2012, Advanced materials.

[24]  H. Yi,et al.  Mechanism of the Switchable Photovoltaic Effect in Ferroelectric BiFeO3 , 2011, Advanced materials.

[25]  W. Schmidt,et al.  Barium titanate ground- and excited-state properties from first-principles calculations , 2011 .

[26]  P Shafer,et al.  Above-bandgap voltages from ferroelectric photovoltaic devices. , 2010, Nature nanotechnology.

[27]  Yan Liu,et al.  Structure and dielectric behavior of Nd-doped BaTiO3 perovskites , 2008 .

[28]  Yiping Wang,et al.  Effects of Ca doping on the Curie temperature, structural, dielectric, and elastic properties of Ba0.4Sr0.6−xCaxTiO3 (0⩽x⩽0.3) perovskites , 2005 .

[29]  Nicola A. Spaldin,et al.  Theoretical Prediction of New High-Performance Lead-Free Piezoelectrics , 2005 .

[30]  D. Vanderbilt,et al.  First-principles study of (BiScO 3 ) 1-x -(PbTiO 3 ) x piezoelectric alloys , 2003, cond-mat/0302277.

[31]  V. Fridkin,et al.  Bulk photovoltaic effect in noncentrosymmetric crystals , 2001 .

[32]  Georg Kresse,et al.  Fully unconstrained noncollinear magnetism within the projector augmented-wave method , 2000 .

[33]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[34]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[35]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[36]  B. Sturman,et al.  The relation between shift and ballistic currents in the theory of photogalvanic effect , 1988 .

[37]  L Kirkwood,et al.  [Yesterday, today and tomorrow]. , 1983, L' Infirmiere canadienne.

[38]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[39]  Wolfgang Ruppel,et al.  Bulk photovoltaic effect in BaTiO3 , 1975 .

[40]  Alastair M. Glass,et al.  High‐voltage bulk photovoltaic effect and the photorefractive process in LiNbO3 , 1974 .