Communication in necrophagous Diptera larvae: interspecific effect of cues left behind by maggots and implications in their aggregation

[1]  J. Deneubourg,et al.  Mixed‐species aggregations in arthropods , 2019, Insect science.

[2]  S. C. Nicolis,et al.  Sensitivity of density-dependent threshold to species composition in arthropod aggregates , 2016, Scientific Reports.

[3]  D. Charabidzé,et al.  Thermoregulation in gregarious dipteran larvae: evidence of species‐specific temperature selection , 2016 .

[4]  D. Sumpter,et al.  Collective selection of food patches in Drosophila , 2016, Journal of Experimental Biology.

[5]  J. Deneubourg,et al.  Interspecific shared collective decision-making in two forensically important species , 2016, Proceedings of the Royal Society B: Biological Sciences.

[6]  C. Devigne,et al.  Do necrophagous blowflies (Diptera: Calliphoridae) lay their eggs in wounds?: Experimental data and implications for forensic entomology. , 2015, Forensic science international.

[7]  Christopher A. Wheeler,et al.  Following in Their Footprints: Cuticular Hydrocarbons as Overwintering Aggregation Site Markers in Hippodamia convergens , 2014, Journal of Chemical Ecology.

[8]  J. Deneubourg,et al.  Benefits of aggregation in woodlice: a factor in the terrestrialization process? , 2013, Insectes Sociaux.

[9]  C. Devigne,et al.  Evidence of active aggregation behaviour in Lucilia sericata larvae and possible implication of a conspecific mark , 2013, Animal Behaviour.

[10]  D. Charabidzé,et al.  Discontinuous foraging behavior of necrophagous Lucilia sericata (Meigen 1826) (Diptera Calliphoridae) larvae. , 2013, Journal of insect physiology.

[11]  D. Saunders,et al.  Effects of larval crowding on size and fecundity of the blow fly, Calliphora vicina (Diptera: Calliphoridae) , 2013 .

[12]  P. Stepnowski,et al.  Cuticular and internal n-alkane composition of Lucilia sericata larvae, pupae, male and female imagines: application of HPLC-LLSD and GC/MS-SIM. , 2012, Bulletin of entomological research.

[13]  A. Dussutour,et al.  Key Factors for the Emergence of Collective Decision in Invertebrates , 2012, Front. Neurosci..

[14]  D. Charabidzé,et al.  Larval-mass effect: Characterisation of heat emission by necrophageous blowflies (Diptera: Calliphoridae) larval aggregates. , 2011, Forensic science international.

[15]  R. Brogan,et al.  Physiological trade-offs of forming maggot masses by necrophagous flies on vertebrate carrion , 2011, Bulletin of Entomological Research.

[16]  Jean-Louis Deneubourg,et al.  Individual Preferences and Social Interactions Determine the Aggregation of Woodlice , 2011, PloS one.

[17]  M. Spelman,et al.  Changes in Development and Heat Shock Protein Expression in Two Species of Flies (Sarcophaga bullata [Diptera: Sarcophagidae] and Protophormia terraenovae [Diptera: Calliphoridae]) Reared in Different Sized Maggot Masses , 2010, Journal of medical entomology.

[18]  R. Dixon,et al.  An assessment of the antibacterial activity in larval excretion/secretion of four species of insects recorded in association with corpses, using Lucilia sericata Meigen as the marker species. , 2010, Bulletin of entomological research.

[19]  C. Gers,et al.  Ontogenetic study of three Calliphoridae of forensic importance through cuticular hydrocarbon analysis , 2008, Medical and veterinary entomology.

[20]  D. H. Slone,et al.  Thermoregulation in Larval Aggregations of Carrion-Feeding Blow Flies (Diptera: Calliphoridae) , 2007, Journal of medical entomology.

[21]  J. Joy,et al.  Carrion fly (Diptera: Calliphoridae) larval colonization of sunlit and shaded pig carcasses in West Virginia, USA. , 2006, Forensic science international.

[22]  Bryan S. Turner,et al.  The effects of larval crowding and food type on the size and development of the blowfly, Calliphora vomitoria. , 2006, Forensic science international.

[23]  D. Sumpter The principles of collective animal behaviour , 2006, Philosophical Transactions of the Royal Society B: Biological Sciences.

[24]  Colette Rivault,et al.  Cuticular hydrocarbon profiles and aggregation in four Periplaneta species (Insecta: Dictyoptera). , 2005, Journal of insect physiology.

[25]  John R. Carlson,et al.  The Molecular Basis of Odor Coding in the Drosophila Larva , 2005, Neuron.

[26]  J. Deneubourg,et al.  Self-organized aggregation in cockroaches , 2005, Animal Behaviour.

[27]  John R Carlson,et al.  The Molecular Basis of Odor Coding in the Drosophila Antenna , 2004, Cell.

[28]  T. D. Fitzgerald,et al.  Specificity of trail markers of forest and eastern tent caterpillars , 1979, Journal of Chemical Ecology.

[29]  C. Ames,et al.  Low temperature episodes in development of blowflies: implications for postmortem interval estimation , 2003, Medical and veterinary entomology.

[30]  J. Deneubourg,et al.  Dynamics of Aggregation and Emergence of Cooperation , 2002, The Biological Bulletin.

[31]  B. Woodcock,et al.  Aggregation, habitat quality and coexistence: a case study on carrion fly communities in slug cadavers , 2002 .

[32]  G. Di Vella,et al.  Factors affecting decomposition and Diptera colonization. , 2001, Forensic science international.

[33]  C Reiter,et al.  Effect of temperature on Lucilia sericata (Diptera: Calliphoridae) development with special reference to the isomegalen- and isomorphen-diagram. , 2001, Forensic science international.

[34]  M. I. Marchenko Medicolegal relevance of cadaver entomofauna for the determination of the time of death. , 2001, Forensic science international.

[35]  M. Cobb What and how do maggots smell? , 1999 .

[36]  L. Edelstein-Keshet,et al.  Complexity, pattern, and evolutionary trade-offs in animal aggregation. , 1999, Science.

[37]  D. Moore,et al.  Effects of environmental factors on circadian activity in the flesh fly, Sarcophaga crassipalpis , 1999 .

[38]  C Rivault,et al.  Cuticular extracts inducing aggregation in the German cockroach, Blattella germanica (L.). , 1998, Journal of insect physiology.

[39]  A. Bagnères,et al.  Differential adsorption of allospecific hydrocarbons by the cuticles of two termite species, Reticulitermes santonensis and R. lucifugus grassei, living in a mixed colony. Passive transfer by contact. , 1997, Journal of insect physiology.

[40]  Julia K. Parrish,et al.  Animal Groups in Three Dimensions: Analysis , 1997 .

[41]  E. Danchin,et al.  The evolution of coloniality: the emergence of new perspectives. , 1997, Trends in ecology & evolution.

[42]  E. Bonabeau,et al.  Self-organization in social insects. , 1997, Trends in ecology & evolution.

[43]  A. Bagnères,et al.  Selective adaptation of the cuticular hydrocarbon profiles of the slave-making ants Polyergus rufescens Latr. and their Formica rufibarbis Fab. and F. Cunicularia Latr. slaves , 1996 .

[44]  I. Hanski,et al.  Population aggregation facilitates coexistence of many competing carrion fly species , 1995 .

[45]  A. Ives Aggregation and Coexistence in a Carrion Fly Community , 1991 .

[46]  V. Bowles,et al.  Tryptic and chymotryptic proteases released by larvae of the blowfly, Lucilia cuprina. , 1990, International journal for parasitology.

[47]  M. L. Goff,et al.  Effects of larval population density on rates of development and interactions between two species of Chrysomya (Diptera: Calliphoridae) in laboratory culture. , 1990, Journal of medical entomology.

[48]  B. Greenberg,et al.  Substrate-specific Analysis of Proteolytic Enzymes in the Larval Midgut of Calliphora vicina , 1975 .

[49]  W. Hamilton Geometry for the selfish herd. , 1971, Journal of theoretical biology.

[50]  P. H. Strange The Spectral Sensitivity of Calliphora Maggots , 1961 .

[51]  G. C. Ullyett Competition for food and allied phenomena in sheep-blowfly populations , 1950, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[52]  R. Hobson Studies on the Nutrition of Blow-Fly Larvae III. The Liquefaction of Muscle , 1932 .

[53]  R. Hobson Studies on the Nutrition of Blow-fly Larvae. IV. The normal Rôle of Micro-organisms in larval Growth. , 1932 .