Prevalent lightning sferics at 600 megahertz near Jupiter’s poles

[1]  J. Connerney,et al.  Discovery of rapid whistlers close to Jupiter implying lightning rates similar to those on Earth , 2018, Nature Astronomy.

[2]  Shannon T. Brown,et al.  Implications of the ammonia distribution on Jupiter from 1 to 100 bars as measured by the Juno microwave radiometer , 2017, Geophysical research letters.

[3]  Shannon T. Brown,et al.  The distribution of ammonia on Jupiter from a preliminary inversion of Juno microwave radiometer data , 2017 .

[4]  T. Owen,et al.  Jupiter’s interior and deep atmosphere: The initial pole-to-pole passes with the Juno spacecraft , 2017, Science.

[5]  R. Williamson,et al.  MWR: Microwave Radiometer for the Juno Mission to Jupiter , 2017 .

[6]  W. Farrell Planetary Radio Emission from Lightning: Discharge and Detectability , 2013 .

[7]  Henry Throop,et al.  Polar Lightning and Decadal-Scale Cloud Variability on Jupiter , 2007, Science.

[8]  R. West,et al.  Lightning on Jupiter observed in the Hα line by the Cassini imaging science subsystem , 2004 .

[9]  J. Burns,et al.  Cassini Imaging of Jupiter's Atmosphere, Satellites, and Rings , 2003, Science.

[10]  R. Hueso,et al.  A Three-Dimensional Model of Moist Convection for the Giant Planets: The Jupiter Case , 2001 .

[11]  Galileo Imaging Team,et al.  Moist convection as an energy source for the large-scale motions in Jupiter's atmosphere , 2000, Nature.

[12]  Galileo Imaging Team,et al.  Observation of moist convection in Jupiter's atmosphere , 2000, Nature.

[13]  Ashwin R. Vasavada,et al.  Galileo Images of Lightning on Jupiter , 1999 .

[14]  T. Encrenaz,et al.  A comparison of the atmospheres of Jupiter and Saturn: deep atmospheric composition, cloud structure, vertical mixing, and origin. , 1999, Planetary and space science.

[15]  J. McConnell,et al.  A model analysis of Galileo electron densities on Jupiter , 1999 .

[16]  D. Hunten,et al.  The composition of the Jovian atmosphere as determined by the Galileo probe mass spectrometer. , 1998, Journal of geophysical research.

[17]  M. Uman,et al.  Measurements of radio frequency signals from lightning in Jupiter's atmosphere , 1998 .

[18]  J. Connerney,et al.  New models of Jupiter's magnetic field constrained by the Io flux tube footprint , 1998 .

[19]  J. Lunine,et al.  Generation of lightning in Jupiter's water cloud , 1995, Nature.

[20]  T. Guillot Condensation of methane, ammonia, and water and the inhibition of convection in giant planets. , 1995, Science.

[21]  W. Borucki,et al.  Analysis of Voyager 2 images of Jovian lightning , 1992 .

[22]  C. Stoker Moist convection: A mechanism for producing the vertical structure of the Jovian Equatorial Plumes , 1986 .

[23]  K. Rinnert Lightning on other planets , 1985 .

[24]  J. Pirraglia Meridional energy balance of Jupiter , 1984 .

[25]  T. Duxbury,et al.  First results on Jovian lightning , 1979, Nature.

[26]  Donald A. Gurnett,et al.  Whistlers observed by Voyager 1: Detection of lightning on Jupiter , 1979 .

[27]  Robert Meneghini,et al.  Simulation of radiation from lightning return strokes - The effects of tortuosity , 1978 .

[28]  A. Ingersoll,et al.  Solar heating and internal heat flow on Jupiter , 1978 .

[29]  L. L. Oh Measured and Calculated Spectral Amplitude Distribution of Lightning Sferics , 1969 .

[30]  Kurt W. Weiler,et al.  Radio astronomy at long wavelengths , 2000 .

[31]  P. Zarka On detection of radio bursts associated with Jovian and Saturnian lightning , 1985 .