Interfacial microstructure formed by reactive metal penetration of Al into mullite

Microstructure in the reaction interface between molten Al and dense mullite have been studied by transmission electron microscopy to provide insight into mechanisms for forming ceramic-metal composites by reactive metal penetration. The reactions, which have the overall stoichiometry, 3Al#iz01~ + (8+ x)A1 + 13 AlzO~ + xA1 + 6Si, were carried out at temperatures of 900, 1100, and 1200oC for 5 minutes and 60 minutes, and 1400oC for 15 minutes. Observed phases generally were those given in the above reaction, although their proportions and interracial rnicrostructures differed strongly with reaction temperature. After reaction at 900oC, a thin Al layer separated unreacted mullite from the cx-AlzO~ and Al reaction products. No Si phase was found near the reaction front. After 5 minutes at 1100"C, the nxtction front contained Si, ct-A120~, and an aluminum oxide phase with a high concentration of Si. After 60 minutes at 11O(YC many of the cx-A120g particles were needle-shaped with a preferred orientation. After reaction at 1200oC, the reaction front contained a high density of Si particles that formed a continuous layer over many of the mullite grains. The sample reacted at 140VC for 15 minutes had a dense ct-A120J reaction layer less than 2~m thick. Some isolated Si particles were present between the a-AlzO~ layer and the unreacted mullite. Using previously measured reaction kinetics data, the observed temperature dependence of the interracial microstructure have been modeled as three sequential steps, each one of which is rate-limiting in a different temperature range.