A geometric model for intrinsic residual strain and phase stability in high entropy alloys

Abstract Following the Hume–Rothery rules, it is a longstanding notion that atomic size mismatch induces intrinsic residual strains in a common lattice which may cause lattice instability and thus phase transition in an alloy. For conventional alloys, such an intrinsic residual strain can be derived with the continuum theory of elasticity; however, lack of distinction between solvent and solute atoms in recently developed high entropy alloys simply defies such an approach. Here, we develop a general self-contained geometric model that enables the calculation of intrinsic residual strains around different sized elements in a multi-component alloy, which links the average lattice constant of the alloy to a few critical geometric variables related to the close atomic packing in that lattice, such as atomic size, atomic fraction and packing density. When applied to glass-forming high entropy alloys and bulk metallic glasses, our model unravels that amorphization occurs when the root-mean-square (R.M.S.) residual strain rises above ∼10%, in good agreement with the Lindemann’s lattice instability criterion. By comparison, the transition from a single- to multi-phase solid solution takes place in crystalline high entropy alloys when the R.M.S. residual strain approaches ∼5%. Our current findings provide a quantitative insight into phase stability in multicomponent alloys, which should be useful in the design of high entropy alloys with desired phases.

[1]  D. Oxtoby New perspectives on freezing and melting , 1990, Nature.

[2]  Yunhao Huang,et al.  Atomic-size effect and solid solubility of multicomponent alloys , 2015 .

[3]  C. Liu,et al.  Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase , 2011 .

[4]  Yehui Zhang,et al.  The Phase Competition and Stability of High-Entropy Alloys , 2014 .

[5]  B. Cantor,et al.  Microstructural development in equiatomic multicomponent alloys , 2004 .

[6]  Y B Wang,et al.  In vitro and in vivo studies on biodegradable CaMgZnSrYb high-entropy bulk metallic glass. , 2013, Acta biomaterialia.

[7]  T. Egami Atomic level stresses , 2011 .

[8]  P. Liaw,et al.  Solid‐Solution Phase Formation Rules for Multi‐component Alloys , 2008 .

[9]  Takeshi Egami,et al.  Atomic size effect on the formability of metallic glasses , 1984 .

[10]  J. Yeh,et al.  FCC and BCC equivalents in as-cast solid solutions of AlxCoyCrzCu0.5FevNiw high-entropy alloys , 2006 .

[11]  Sheng Guo,et al.  Entropy-driven phase stability and slow diffusion kinetics in an Al0.5CoCrCuFeNi high entropy alloy , 2012 .

[12]  H. Ding,et al.  High entropy Ti20Zr20Cu20Ni20Be20 bulk metallic glass , 2013 .

[13]  J. Yeh,et al.  Microstructure and mechanical property of as-cast, -homogenized, and -deformed AlxCoCrFeNi (0 ≤ x ≤ 2) high-entropy alloys , 2009 .

[14]  Yuan-Sheng Huang,et al.  On the elemental effect of AlCoCrCuFeNi high-entropy alloy system , 2007 .

[15]  J. R. Rogers,et al.  Experimental and computer simulation determination of the structural changes occurring through the liquid–glass transition in Cu–Zr alloys , 2010 .

[16]  Zhiyuan Liu,et al.  Micromechanical characterization of casting-induced inhomogeneity in an Al0.8CoCrCuFeNi high-entropy alloy , 2011 .

[17]  Weihua Wang,et al.  High mixing entropy bulk metallic glasses , 2011 .

[18]  Oleg N. Senkov,et al.  Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys , 2014 .

[19]  J. Yeh,et al.  Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements , 2005 .

[20]  D. Miracle,et al.  Effect of the atomic size distribution on glass forming ability of amorphous metallic alloys , 2001 .

[21]  A. Inoue,et al.  Direct Comparison between Critical Cooling Rate and Some Quantitative Parameters for Evaluation of Glass-Forming Ability in Pd-Cu-Ni-P Alloys , 2002 .

[22]  Jicheng He,et al.  Effect of annealing treatment on microstructures and mechanical properties of FeCoNiCuAl high entropy alloys , 2013 .

[23]  S. Bass,et al.  Constituent quarks and g1 , 1999, hep-ph/9902280.

[24]  V. Lubarda On the effective lattice parameter of binary alloys , 2003 .

[25]  Tongmin Wang,et al.  Annealing effects on the microstructure and properties of bulk high-entropy CoCrFeNiTi0.5 alloy casting ingot , 2014 .

[26]  J. Yeh,et al.  Effect of the substitution of Co by Mn in Al-Cr-Cu-Fe-Co-Ni high-entropy alloys , 2006 .

[27]  J. D. Eshelby The Continuum Theory of Lattice Defects , 1956 .

[28]  Goran Ungar,et al.  Giant Supramolecular Liquid Crystal Lattice , 2003, Science.

[29]  L. Vegard,et al.  Die Konstitution der Mischkristalle und die Raumfüllung der Atome , 1921 .

[30]  Wei Zhang,et al.  Entropies in Alloy Design for High-Entropy and Bulk Glassy Alloys , 2013, Entropy.

[31]  T. Chin,et al.  Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements , 2004 .

[32]  Shou-Yi Chang,et al.  Anomalous decrease in X-ray diffraction intensities of Cu–Ni–Al–Co–Cr–Fe–Si alloy systems with multi-principal elements , 2007 .

[33]  A. Takeuchi,et al.  Pd20Pt20Cu20Ni20P20 high-entropy alloy as a bulk metallic glass in the centimeter , 2011 .

[34]  A. Inoue Stabilization of metallic supercooled liquid and bulk amorphous alloys , 2000 .

[35]  C. Woodward,et al.  Microstructure and Room Temperature Properties of a High-Entropy TaNbHfZrTi Alloy (Postprint) , 2011 .

[36]  A. Chroneos,et al.  Deviations from Vegard's law in ternary III-V alloys , 2010 .

[37]  T. Egami Universal criterion for metallic glass formation , 1997 .

[38]  H. W. King Quantitative size-factors for metallic solid solutions , 1966 .

[39]  A. Inoue,et al.  Bulk Glass Formation of Ti-Zr-Hf-Cu-M (M=Fe, Co, Ni) Alloys , 2002 .

[40]  C. Liu,et al.  Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys , 2011 .

[41]  Jian Lu,et al.  The generalized thermodynamic rule for phase selection in multicomponent alloys , 2015 .

[42]  C. Liu,et al.  A new glass-forming ability criterion for bulk metallic glasses , 2002 .

[43]  Sheng Guo,et al.  Solid solutioning in equiatomic alloys: Limit set by topological instability , 2014 .

[44]  K. Dahmen,et al.  Microstructures and properties of high-entropy alloys , 2014 .

[45]  P. Liaw,et al.  Refractory high-entropy alloys , 2010 .

[46]  A. Inoue,et al.  Direct comparison between critical cooling rate and some quantitative parameters for evaluation of glass-forming ability in Pd-Cu-Ni-P alloys : Bulk amorphous, nano-crystalline and nano-quasicrystalline alloys IV , 2002 .