First Principle Models Based Dataset Generation for Multi-Target Regression and Multi-Label Classification Evaluation
暂无分享,去创建一个
[1] N. Lawrence Ricker,et al. Decentralized control of the Tennessee Eastman Challenge Process , 1996 .
[2] Thomas M. Breuel,et al. A Bayes-true data generator for evaluation of supervised and unsupervised learning methods , 2011, Pattern Recognit. Lett..
[3] Jesús S. Aguilar-Ruiz,et al. Knowledge discovery from data streams , 2009, Intell. Data Anal..
[4] Ludmila I. Kuncheva,et al. A framework for generating data to simulate changing environments , 2007, Artificial Intelligence and Applications.
[5] J. Freidman,et al. Multivariate adaptive regression splines , 1991 .
[6] Geoff Holmes,et al. New ensemble methods for evolving data streams , 2009, KDD.
[7] Manuel Rodríguez,et al. First principles model based control , 2005 .
[8] Changsheng Li,et al. MORES: Online Incremental Multiple-Output Regression for Data Streams , 2014, ArXiv.
[9] Mohieddine Jelali,et al. Revision of the Tennessee Eastman Process Model , 2015 .
[10] Alice M. Agogino,et al. Innovative design of mechanical structures from first principles , 1987, Artif. Intell. Eng. Des. Anal. Manuf..
[11] Karl Johan Åström,et al. PID Controllers: Theory, Design, and Tuning , 1995 .
[12] Newton Spolaôr,et al. A Framework to Generate Synthetic Multi-label Datasets , 2014, CLEI Selected Papers.
[13] María Pérez-Ortiz,et al. An n-Spheres Based Synthetic Data Generator for Supervised Classification , 2013, IWANN.
[14] Geoff Holmes,et al. Streaming Multi-label Classification , 2011, WAPA.