Codes over rings from curves of higher genus
暂无分享,去创建一个
[1] José Felipe Voloch,et al. Euclidean weights of codes from elliptic curves over rings , 2000 .
[3] Henning Stichtenoth,et al. Algebraic function fields and codes , 1993, Universitext.
[4] B. Mazur. Frobenius and the Hodge filtration , 1972 .
[5] R. Tennant. Algebra , 1941, Nature.
[6] M. Raynaud. Around the Mordell conjecture for function fields and a conjecture of Serge Lang , 1983 .
[7] 望月 新一,et al. A Theory of Ordinary p-adic Curves , 1995 .
[8] N. J. A. Sloane,et al. The Z4-linearity of Kerdock, Preparata, Goethals, and related codes , 1994, IEEE Trans. Inf. Theory.
[9] B. Mazur. Frobenius and the Hodge Filtration (estimates) , 1973 .
[10] A. Buium. Geometry of $p$-jets , 1996 .
[11] M. Tsfasman,et al. Modular curves, Shimura curves, and Goppa codes, better than Varshamov‐Gilbert bound , 1982 .
[12] T. Helleseth,et al. An upper bound for some exponential sums over Galois rings and applications , 1994, Proceedings of 1994 IEEE International Symposium on Information Theory.
[13] J. H. Lint,et al. Algebraic-geometric codes , 1992 .
[14] Judy L. Walker. Algebraic Geometric Codes over Rings , 1999 .
[15] Shinichi Mochizuki,et al. A Theory of Ordinary $p$-Adic Curves , 1996 .
[16] Judy L. Walker,et al. The Nordstrom-Robinson code is algebraic-geometric , 1997, IEEE Trans. Inf. Theory.
[17] A New Upper Bound for the Dimension of Trace Codes , 1991 .