A New Incremental PCA Algorithm With Application to Visual Learning and Recognition

This paper proposes a new mean-shifting Incremental PCA (IPCA) method based on the autocorrelation matrix. The dimension of the updated matrix remains constant instead of increasing with the number of input data points. Comparing to some previous batch and iterative PCA algorithms, the proposed IPCA requires lower computational time and storage capacity owing to the two transformations designed. The experiment results show the efficiency and accuracy of the proposed IPCA method in applications of the on-line visual learning and recognition.

[1]  Mahmood R. Azimi-Sadjadi,et al.  Principal component extraction using recursive least squares learning , 1995, IEEE Trans. Neural Networks.

[2]  Jimeng Sun,et al.  Beyond streams and graphs: dynamic tensor analysis , 2006, KDD '06.

[3]  E. Oja Simplified neuron model as a principal component analyzer , 1982, Journal of mathematical biology.

[4]  Yann LeCun,et al.  The mnist database of handwritten digits , 2005 .

[5]  Yongmin Li,et al.  On incremental and robust subspace learning , 2004, Pattern Recognit..

[6]  Haitao Zhao,et al.  A novel incremental principal component analysis and its application for face recognition , 2006, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[7]  Tat-Jun Chin,et al.  Incremental Kernel Principal Component Analysis , 2007, IEEE Transactions on Image Processing.

[8]  Danijel Skocaj,et al.  Incremental and robust learning of subspace representations , 2008, Image Vis. Comput..

[9]  Hanqing Lu,et al.  Distance based kernel PCA image reconstruction , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[10]  Yan Fu,et al.  Neural networks based approach for computing eigenvectors and eigenvalues of symmetric matrix , 2004 .

[11]  Lior Wolf,et al.  Learning over Sets using Kernel Principal Angles , 2003, J. Mach. Learn. Res..

[12]  Matthew Brand,et al.  Incremental Singular Value Decomposition of Uncertain Data with Missing Values , 2002, ECCV.

[13]  Xuelong Li,et al.  Iterative Subspace Analysis Based on Feature Line Distance , 2009, IEEE Trans. Image Process..

[14]  Xuelong Li,et al.  Direct kernel biased discriminant analysis: a new content-based image retrieval relevance feedback algorithm , 2006, IEEE Transactions on Multimedia.

[15]  B. S. Manjunath,et al.  An Eigenspace Update Algorithm for Image Analysis , 1997, CVGIP Graph. Model. Image Process..

[16]  Lei Wang,et al.  Generalized KPCA by adaptive rules in feature space , 2010, Int. J. Comput. Math..

[17]  Terence D. Sanger,et al.  Optimal unsupervised learning in a single-layer linear feedforward neural network , 1989, Neural Networks.

[18]  Ming-Hsuan Yang,et al.  Incremental Learning for Visual Tracking , 2004, NIPS.

[19]  Michael Lindenbaum,et al.  Sequential Karhunen-Loeve basis extraction and its application to images , 1998, Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269).

[20]  Philip S. Yu,et al.  Incremental tensor analysis: Theory and applications , 2008, TKDD.

[21]  Ales Leonardis,et al.  Incremental PCA for on-line visual learning and recognition , 2002, Object recognition supported by user interaction for service robots.

[22]  Ralph R. Martin,et al.  Merging and Splitting Eigenspace Models , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  Juyang Weng,et al.  Candid Covariance-Free Incremental Principal Component Analysis , 2003, IEEE Trans. Pattern Anal. Mach. Intell..