Clinical characteristics and electrophysiologic properties of SCN5A variants in fever-induced Brugada syndrome

[1]  E. Ashley,et al.  European Heart Rhythm Association (EHRA)/Heart Rhythm Society (HRS)/Asia Pacific Heart Rhythm Society (APHRS)/Latin American Heart Rhythm Society (LAHRS) Expert Consensus Statement on the state of genetic testing for cardiac diseases , 2022, Europace : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology.

[2]  E. Ashley,et al.  European Heart Rhythm Association (EHRA)/Heart Rhythm Society (HRS)/Asia Pacific Heart Rhythm Society (APHRS)/Latin American Heart Rhythm Society (LAHRS) Expert Consensus Statement on the state of genetic testing for cardiac diseases. , 2022, Heart rhythm.

[3]  C. Antzelevitch,et al.  Distinct Features of Probands With Early Repolarization and Brugada Syndromes Carrying SCN5A Pathogenic Variants. , 2021, Journal of the American College of Cardiology.

[4]  C. Dina,et al.  Functionally validated SCN5A variants allow interpretation of pathogenicity and prediction of lethal events in Brugada syndrome. , 2021, European heart journal.

[5]  N. Yan,et al.  Structural Basis for Pore Blockade of the Human Cardiac Sodium Channel Nav1.5 by the Antiarrhythmic Drug Quinidine. , 2021, Angewandte Chemie.

[6]  E. Behr,et al.  Brugada syndrome and reduced right ventricular outflow tract conduction reserve: a final common pathway? , 2021, European heart journal.

[7]  E. Petretto,et al.  Brugada syndrome genetics is associated with phenotype severity , 2020, European heart journal.

[8]  A. Wilde,et al.  In Children and Adolescents From Brugada Syndrome-Families, Only SCN5A Mutation Carriers Develop a Type-1 ECG Pattern Induced By Fever. , 2020, Circulation.

[9]  F. Sacher,et al.  Age at Diagnosis of Brugada Syndrome: Influence on Clinical Characteristics and Risk of Arrhythmia. , 2019, Heart rhythm.

[10]  D. Roden,et al.  High-throughput reclassification of SCN5A variants , 2019, bioRxiv.

[11]  S. Priori,et al.  Ethnic Differences in Patients with Brugada Syndrome and Arrhythmic Events: New Insights from SABRUS. , 2019, Heart rhythm.

[12]  S. Priori,et al.  Gender differences in patients with Brugada syndrome and arrhythmic events: Data from a survey on arrhythmic events in 678 patients. , 2018, Heart rhythm.

[13]  Michael J. Ackerman,et al.  Reappraisal of Reported Genes for Sudden Arrhythmic Death , 2018, Circulation.

[14]  S. Priori,et al.  Fever-related arrhythmic events in the multicenter Survey on Arrhythmic Events in Brugada Syndrome. , 2018, Heart rhythm.

[15]  Yanwei Xing,et al.  Gender Differences in Prognosis and Risk Stratification of Brugada Syndrome: A Pooled Analysis of 4,140 Patients From 24 Clinical Trials , 2018, Front. Physiol..

[16]  Kathleen F. Kerr,et al.  PR interval genome-wide association meta-analysis identifies 50 loci associated with atrial and atrioventricular electrical activity , 2018, Nature Communications.

[17]  Shao-bo Shi,et al.  Prevalence of spontaneous Brugada ECG pattern recorded at standard intercostal leads: A meta-analysis. , 2017, International journal of cardiology.

[18]  S. Priori,et al.  Age of First Arrhythmic Event in Brugada Syndrome: Data From the SABRUS (Survey on Arrhythmic Events in Brugada Syndrome) in 678 Patients , 2017, Circulation. Arrhythmia and electrophysiology.

[19]  Toshihiro Tanaka,et al.  Genotype-Phenotype Correlation of SCN5A Mutation for the Clinical and Electrocardiographic Characteristics of Probands With Brugada Syndrome: A Japanese Multicenter Registry , 2017, Circulation.

[20]  E. Lee,et al.  SCN5A Genetic Polymorphisms Associated With Increased Defibrillator Shocks in Brugada Syndrome , 2017, Journal of the American Heart Association.

[21]  J. Brugada,et al.  Electrical Substrate Elimination in 135 Consecutive Patients With Brugada Syndrome , 2017, Circulation. Arrhythmia and electrophysiology.

[22]  Hong Jiang,et al.  Atrial fibrillation associated with Wolff-Parkinson-White syndrome in a patient with concomitant Brugada syndrome , 2017, HeartRhythm case reports.

[23]  David E. Kim,et al.  Simultaneous Optimization of Biomolecular Energy Functions on Features from Small Molecules and Macromolecules. , 2016, Journal of chemical theory and computation.

[24]  Akinori Awazu,et al.  Risk stratification of ventricular fibrillation in Brugada syndrome using noninvasive scoring methods. , 2016, Heart rhythm.

[25]  H. Huikuri,et al.  J-Wave syndromes expert consensus conference report: Emerging concepts and gaps in knowledge , 2016, Journal of arrhythmia.

[26]  Bale,et al.  Standards and Guidelines for the Interpretation of Sequence Variants: A Joint Consensus Recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology , 2015, Genetics in Medicine.

[27]  S. Viskin,et al.  Mutations in SCN10A are responsible for a large fraction of cases of Brugada syndrome. , 2014, Journal of the American College of Cardiology.

[28]  C. Antzelevitch,et al.  ABCC9 is a novel Brugada and early repolarization syndrome susceptibility gene. , 2014, International journal of cardiology.

[29]  S. Viskin,et al.  Fever-induced Brugada pattern: how common is it and what does it mean? , 2013, Heart rhythm.

[30]  J. M. Di Diego,et al.  Ionic and Cellular Mechanisms Underlying the Development of Acquired Brugada Syndrome in Patients Treated with Antidepressants , 2012, Journal of cardiovascular electrophysiology.

[31]  C. Antzelevitch,et al.  Brugada-Like Syndrome in Infancy Presenting With Rapid Ventricular Tachycardia and Intraventricular Conduction Delay , 2012, Circulation.

[32]  Tachapong Ngarmukos,et al.  Prevention of Ventricular Fibrillation Episodes in Brugada Syndrome by Catheter Ablation Over the Anterior Right Ventricular Outflow Tract Epicardium , 2011, Circulation.

[33]  A. Wilde,et al.  The pathophysiological mechanism underlying Brugada syndrome: depolarization versus repolarization. , 2010, Journal of molecular and cellular cardiology.

[34]  C. Antzelevitch,et al.  A Mutation in the β3 Subunit of the Cardiac Sodium Channel Associated With Brugada ECG Phenotype , 2009, Circulation. Cardiovascular genetics.

[35]  A. Wilde,et al.  Fever increases the risk for cardiac arrest in the Brugada syndrome. , 2008, Annals of internal medicine.

[36]  S. Sicouri,et al.  Abnormal expression of cardiac neural crest cells in heart development: a different hypothesis for the etiopathogenesis of Brugada syndrome. , 2007, Heart rhythm.

[37]  J. Brugada,et al.  Compound Heterozygous Mutations P336L and I1660V in the Human Cardiac Sodium Channel Associated With the Brugada Syndrome , 2006, Circulation.

[38]  J. Schläpfer,et al.  Brugada syndrome and fever: genetic and molecular characterization of patients carrying SCN5A mutations. , 2005, Cardiovascular research.

[39]  R. Brugada,et al.  Lidocaine-Induced Brugada Syndrome Phenotype Linked to a Novel Double Mutation in the Cardiac Sodium Channel , 2005, Circulation research.

[40]  C Antzelevitch,et al.  Ionic mechanisms responsible for the electrocardiographic phenotype of the Brugada syndrome are temperature dependent. , 1999, Circulation research.

[41]  Jens Meiler,et al.  ROSETTA3: an object-oriented software suite for the simulation and design of macromolecules. , 2011, Methods in enzymology.

[42]  KoonlaweeNademanee,et al.  Prevention of Ventricular Fibrillation Episodes in Brugada Syndrome by Catheter Ablation Over the Anterior Right Ventricular Outflow Tract Epicardium , 2011 .

[43]  S. Ogawa,et al.  New ECG criteria for high-risk Brugada syndrome. , 2003, Circulation journal : official journal of the Japanese Circulation Society.