Some basic formulations of the virtual element method (VEM) for finite deformations

Abstract We present a general virtual element method (VEM) framework for finite elasticity, which emphasizes two issues: element-level volume change (volume average of the determinant of the deformation gradient) and stabilization. To address the former issue, we provide exact evaluation of the average volume change in both 2D and 3D on properly constructed local displacement spaces. For the later issue, we provide a new stabilization scheme that is based on the trace of the material tangent modulus tensor, which captures highly heterogeneous and localized deformations. Two VEM formulations are presented: a two-field mixed and an equivalent displacement-based, which is free of volumetric locking. Convergence and accuracy of the VEM formulations are verified by means of numerical examples, and engineering applications are demonstrated.

[1]  N. Sukumar,et al.  Quadratic maximum-entropy serendipity shape functions for arbitrary planar polygons , 2013 .

[2]  M. A. Crisfield,et al.  Non-Linear Finite Element Analysis of Solids and Structures: Advanced Topics , 1997 .

[3]  Simone Scacchi,et al.  A C1 Virtual Element Method for the Cahn-Hilliard Equation with Polygonal Meshes , 2015, SIAM J. Numer. Anal..

[4]  Peter Wriggers,et al.  Polygonal finite element methods for contact-impact problems on non-conformal meshes , 2014 .

[5]  Glaucio H. Paulino,et al.  Polygonal finite elements for incompressible fluid flow , 2014 .

[6]  Oscar Lopez-Pamies,et al.  The nonlinear elastic response of suspensions of rigid inclusions in rubber: II—A simple explicit approximation for finite-concentration suspensions , 2013 .

[7]  L. B. D. Veiga,et al.  A virtual element method with arbitrary regularity , 2014 .

[8]  Oscar Lopez-Pamies,et al.  A new I1-based hyperelastic model for rubber elastic materials , 2010 .

[9]  Ray W. Ogden,et al.  Nearly isochoric elastic deformations: Application to rubberlike solids , 1978 .

[10]  Joseph E. Bishop,et al.  Simulating the pervasive fracture of materials and structures using randomly close packed Voronoi tessellations , 2009 .

[11]  Ray W. Ogden,et al.  Volume changes associated with the deformation of rubber-like solids , 1976 .

[12]  Daniel W. Spring,et al.  Filled elastomers: A theory of filler reinforcement based on hydrodynamic and interphasial effects , 2015 .

[13]  Ray W. Ogden,et al.  Nonlinear Elastic Deformations , 1985 .

[14]  F. Brezzi,et al.  Basic principles of Virtual Element Methods , 2013 .

[15]  Glaucio H. Paulino,et al.  On the Virtual Element Method for three-dimensional linear elasticity problems on arbitrary polyhedral meshes , 2014 .

[16]  Javier Segurado,et al.  A numerical approximation to the elastic properties of sphere-reinforced composites , 2002 .

[17]  Franco Brezzi,et al.  The Hitchhiker's Guide to the Virtual Element Method , 2014 .

[18]  Glaucio H. Paulino,et al.  Unstructured polygonal meshes with adaptive refinement for the numerical simulation of dynamic cohesive fracture , 2014, International Journal of Fracture.

[19]  Lourenço Beirão da Veiga,et al.  Virtual Elements for Linear Elasticity Problems , 2013, SIAM J. Numer. Anal..

[20]  Amir R. Khoei,et al.  A polygonal finite element method for modeling arbitrary interfaces in large deformation problems , 2012 .

[21]  Martin Reimers,et al.  Mean value coordinates in 3D , 2005, Comput. Aided Geom. Des..

[22]  Glaucio H. Paulino,et al.  Polygonal finite elements for finite elasticity , 2015 .

[23]  Glaucio H. Paulino,et al.  Polygonal finite elements for topology optimization: A unifying paradigm , 2010 .

[24]  Kai Hormann,et al.  Maximum Entropy Coordinates for Arbitrary Polytopes , 2008, Comput. Graph. Forum.

[25]  E. Stein,et al.  On some mixed finite element methods for incompressible and nearly incompressible finite elasticity , 1996 .

[26]  Glaucio H. Paulino,et al.  PolyTop: a Matlab implementation of a general topology optimization framework using unstructured polygonal finite element meshes , 2012 .

[27]  M. Gurtin,et al.  An introduction to continuum mechanics , 1981 .

[28]  Glaucio H. Paulino,et al.  Addressing Integration Error for Polygonal Finite Elements Through Polynomial Projections: A Patch Test Connection , 2013, 1307.4423.

[29]  Glaucio H. Paulino,et al.  Gradient correction for polygonal and polyhedral finite elements , 2015 .

[30]  Franco Brezzi,et al.  Virtual Element Methods for plate bending problems , 2013 .

[31]  G. Paulino,et al.  PolyMesher: a general-purpose mesh generator for polygonal elements written in Matlab , 2012 .

[32]  Michael S. Floater,et al.  Gradient Bounds for Wachspress Coordinates on Polytopes , 2013, SIAM J. Numer. Anal..

[33]  G. Paulino,et al.  A paradigm for higher-order polygonal elements in finite elasticity using a gradient correction scheme , 2016 .

[34]  Konstantin Lipnikov,et al.  A Mimetic Discretization of the Stokes Problem with Selected Edge Bubbles , 2010, SIAM J. Sci. Comput..

[35]  Ahmed Alsaedi,et al.  Equivalent projectors for virtual element methods , 2013, Comput. Math. Appl..

[36]  Eric R. May,et al.  Nonuniform elastic properties of macromolecules and effect of prestrain on their continuum nature. , 2016, Physical review. E.

[37]  Mark Meyer,et al.  Harmonic coordinates for character articulation , 2007, ACM Trans. Graph..

[38]  Glaucio H. Paulino,et al.  Honeycomb Wachspress finite elements for structural topology optimization , 2009 .

[39]  D. Malkus,et al.  Mixed finite element methods—reduced and selective integration techniques: a unification of concepts , 1990 .

[40]  Glaucio H. Paulino,et al.  Bridging art and engineering using Escher-based virtual elements , 2015 .

[41]  Stefano Berrone,et al.  The virtual element method for discrete fracture network simulations , 2014 .

[42]  Joseph E. Bishop,et al.  A displacement‐based finite element formulation for general polyhedra using harmonic shape functions , 2014 .

[43]  Magdalena Ortiz,et al.  Local maximum‐entropy approximation schemes: a seamless bridge between finite elements and meshfree methods , 2006 .

[44]  A. Russo,et al.  New perspectives on polygonal and polyhedral finite element methods , 2014 .

[45]  A variational formulation with rigid-body constraints for finite elasticity: theory, finite element implementation, and applications , 2016 .

[46]  Peter Wriggers,et al.  A virtual element method for contact , 2016 .

[47]  L. Beirao da Veiga,et al.  Mixed Virtual Element Methods for general second order elliptic problems on polygonal meshes , 2014 .

[48]  Glaucio H. Paulino,et al.  Reduction in mesh bias for dynamic fracture using adaptive splitting of polygonal finite elements , 2014 .

[49]  J. C. Simo,et al.  Variational and projection methods for the volume constraint in finite deformation elasto-plasticity , 1985 .

[50]  Markus H. Gross,et al.  Polyhedral Finite Elements Using Harmonic Basis Functions , 2008, Comput. Graph. Forum.

[51]  L. Beirao da Veiga,et al.  A Virtual Element Method for elastic and inelastic problems on polytope meshes , 2015, 1503.02042.

[52]  M. Floater Mean value coordinates , 2003, Computer Aided Geometric Design.

[53]  J. E. Bolander,et al.  Voronoi-based Interpolants for Fracture Modelling , 2022 .

[54]  Richard S. Falk,et al.  Basic principles of mixed Virtual Element Methods , 2014 .