Corrosion Fatigue Crack Initiation of Type 316N Weldment Under the Influence of Cyclic Stress Amplitude
暂无分享,去创建一个
[1] P. Zhang,et al. Forecasting Low-Cycle Fatigue Performance of Twinning-Induced Plasticity Steels: Difficulty and Attempt , 2017, Metallurgical and Materials Transactions A.
[2] C. Mallika,et al. Characterisation of microstructural damage due to corrosion fatigue in AISI type 316 LN stainless steels with different nitrogen contents , 2016 .
[3] Z. G. Wang,et al. Plastic-Strain-Amplitude Dependence of Dislocation Structures in Cyclically Deformed 〈112〉-Oriented Cu-7 at. pct Al Alloy Single Crystals , 2014, Metallurgical and Materials Transactions A.
[4] N. Saintier,et al. Effect of corrosion on the high cycle fatigue strength of martensitic stainless steel X12CrNiMoV12-3 , 2013 .
[5] Alessandra Eleonora Gallinatti,et al. Fatigue damage identification by means of modal parameters , 2011 .
[6] N. Parvathavarthini,et al. Influence of solution-annealing and stress-relieving on the pitting corrosion resistance of modified 316N SS weld metals: A study using EN technique , 2010 .
[7] H. Mughrabi,et al. Fatigue, an everlasting materials problem - still en vogue , 2010 .
[8] H. S. Khatak,et al. Corrosion Fatigue of AISI Type 316LN Stainless Steel and Its Weld Metal , 2009 .
[9] E. Han,et al. Crack initiation mechanisms for low cycle fatigue of type 316Ti stainless steel in high temperature water , 2008 .
[10] K. B. S. Rao,et al. High temperature low cycle fatigue properties of 316(N) weld metal and 316L(N)/316(N) weld joints , 2008 .
[11] H. S. Khatak,et al. Effect of Heat Input on the Stress Corrosion Cracking Behavior of Weld Metal of Nitrogen-Added AISI Type 316 Stainless Steel , 2004 .
[12] R. Gangloff. Environmental Cracking — Corrosion Fatigue , 2004 .
[13] S. Suresh. Fatigue of Materials: Author index , 1998 .
[14] J. Cahoon,et al. Crack initiation mechanisms for corrosion fatigue of austenitic stainless steel , 1997 .
[15] K. Chawla,et al. Stiffness loss and density decrease due to thermal cycling in an alumina fiber/magnesium alloy composite , 1995 .
[16] T. Magnin. Recent Advances for Corrosion Fatigue Mechanisms , 1995 .
[17] K. B. S. Rao,et al. High temperature, low cycle fatigue behaviour of AISI type 316LN base metal, 316LN-316 weld joint and 316 all-weld metal , 1992 .
[18] S. Suresh. Fatigue of materials , 1991 .
[19] Y. Kondo. Prediction of Fatigue Crack Initiation Life Based on Pit Growth , 1989 .
[20] S. Mediratta,et al. Two stage cyclic work hardening and two slope Coffin-Manson relationship in dual phase steels , 1986 .
[21] T. Magnin,et al. The effects of strain rate on the corrosion fatigue behaviour of B.C.C. Fe26Cr1Mo stainless steels , 1985 .
[22] L. M. Brown. DISLOCATIONS AND THE FATIGUE STRENGTH OF METALS , 1981 .
[23] D. Duquette,et al. The effect of surface dissolution on fatigue deformation and crack nucleation in copper and copper 8% aluminum single crystals , 1978 .
[24] T. Pyle,et al. The Influence of Cyclic Plastic Strain on the Transient Dissolution Behavior of 18/8 Stainless Steel in 3.7 M H 2 SO 4 , 1975 .