Corrosion Fatigue Crack Initiation of Type 316N Weldment Under the Influence of Cyclic Stress Amplitude

[1]  P. Zhang,et al.  Forecasting Low-Cycle Fatigue Performance of Twinning-Induced Plasticity Steels: Difficulty and Attempt , 2017, Metallurgical and Materials Transactions A.

[2]  C. Mallika,et al.  Characterisation of microstructural damage due to corrosion fatigue in AISI type 316 LN stainless steels with different nitrogen contents , 2016 .

[3]  Z. G. Wang,et al.  Plastic-Strain-Amplitude Dependence of Dislocation Structures in Cyclically Deformed 〈112〉-Oriented Cu-7 at. pct Al Alloy Single Crystals , 2014, Metallurgical and Materials Transactions A.

[4]  N. Saintier,et al.  Effect of corrosion on the high cycle fatigue strength of martensitic stainless steel X12CrNiMoV12-3 , 2013 .

[5]  Alessandra Eleonora Gallinatti,et al.  Fatigue damage identification by means of modal parameters , 2011 .

[6]  N. Parvathavarthini,et al.  Influence of solution-annealing and stress-relieving on the pitting corrosion resistance of modified 316N SS weld metals: A study using EN technique , 2010 .

[7]  H. Mughrabi,et al.  Fatigue, an everlasting materials problem - still en vogue , 2010 .

[8]  H. S. Khatak,et al.  Corrosion Fatigue of AISI Type 316LN Stainless Steel and Its Weld Metal , 2009 .

[9]  E. Han,et al.  Crack initiation mechanisms for low cycle fatigue of type 316Ti stainless steel in high temperature water , 2008 .

[10]  K. B. S. Rao,et al.  High temperature low cycle fatigue properties of 316(N) weld metal and 316L(N)/316(N) weld joints , 2008 .

[11]  H. S. Khatak,et al.  Effect of Heat Input on the Stress Corrosion Cracking Behavior of Weld Metal of Nitrogen-Added AISI Type 316 Stainless Steel , 2004 .

[12]  R. Gangloff Environmental Cracking — Corrosion Fatigue , 2004 .

[13]  S. Suresh Fatigue of Materials: Author index , 1998 .

[14]  J. Cahoon,et al.  Crack initiation mechanisms for corrosion fatigue of austenitic stainless steel , 1997 .

[15]  K. Chawla,et al.  Stiffness loss and density decrease due to thermal cycling in an alumina fiber/magnesium alloy composite , 1995 .

[16]  T. Magnin Recent Advances for Corrosion Fatigue Mechanisms , 1995 .

[17]  K. B. S. Rao,et al.  High temperature, low cycle fatigue behaviour of AISI type 316LN base metal, 316LN-316 weld joint and 316 all-weld metal , 1992 .

[18]  S. Suresh Fatigue of materials , 1991 .

[19]  Y. Kondo Prediction of Fatigue Crack Initiation Life Based on Pit Growth , 1989 .

[20]  S. Mediratta,et al.  Two stage cyclic work hardening and two slope Coffin-Manson relationship in dual phase steels , 1986 .

[21]  T. Magnin,et al.  The effects of strain rate on the corrosion fatigue behaviour of B.C.C. Fe26Cr1Mo stainless steels , 1985 .

[22]  L. M. Brown DISLOCATIONS AND THE FATIGUE STRENGTH OF METALS , 1981 .

[23]  D. Duquette,et al.  The effect of surface dissolution on fatigue deformation and crack nucleation in copper and copper 8% aluminum single crystals , 1978 .

[24]  T. Pyle,et al.  The Influence of Cyclic Plastic Strain on the Transient Dissolution Behavior of 18/8 Stainless Steel in 3.7 M H 2 SO 4 , 1975 .