A sedimentary origin for intercrater plains north of the Hellas basin: Implications for climate conditions and erosion rates on early Mars

Understanding the origin (volcanic or sedimentary) and timing of intercrater plains is crucial for deciphering the geological evolution of Mars. We have produced a detailed geological map of the intercrater plains north of the Hellas basin, based on images from the Mars Express High‐Resolution Stereo Camera, the Mars Reconnaissance High‐Resolution Imaging Science Experiment, and Context. Erosional windows and fresh impact craters provide a way of studying the lithology of intercrater plain units. They are composed predominantly of light‐toned sedimentary rocks with subhorizontal bedding over a broad extent (greater than tens of kilometers), showing cross‐bedding stratifications locally. The broad extent, geometry, and flat topography of these sediments favor a formation by aqueous processes (alluvial and lacustrine) rather than airfall (eolian and volcaniclastic). The Late Noachian (~3.7 Ga) sedimentary plains are locally covered by dark‐toned, rough‐textured lava flows of Late Hesperian age (~3.3 Ga). Fe/Mg phyllosilicates were detected within sedimentary rocks, whereas volcanic rocks contain pyroxene and lack signatures of alteration, in agreement with interpretations made from texture and morphology. In erosional windows, the superimposition of sedimentary rocks by younger volcanic flows enables the estimation of an erosion rate of ~1000 nm yr−1 during the Hesperian period (3.3–3.7 Ga). Thus, our study shows that an intense sedimentary cycle occurred on the northern rim of the Hellas basin before and during the Late Noachian, leading to the formation of widespread sedimentary plains, which were then eroded, in agreement with a gradual change in the climatic conditions in this period, and later covered by volcanic flows.

[1]  T. Kneissl,et al.  Planetary surface dating from crater size-frequency distribution measurements: Poisson timing analysis , 2016 .

[2]  Harald Hiesinger,et al.  Photogeologic mapping and the geologic history of the Hellas basin floor, Mars , 2016 .

[3]  J. Michalski,et al.  Clay Minerals on Mars: Updated Crystal-Chemistry from Infrared Remote Sensing and Comparison to Meteorite Data , 2015 .

[4]  N. Thomas,et al.  Desiccation of phyllosilicate-bearing samples as analog for desiccation cracks on Mars: Experimental setup and initial results , 2015 .

[5]  Linda C. Kah,et al.  Gale crater and impact processes – Curiosity’s first 364 Sols on Mars , 2015 .

[6]  R. J. Sullivan,et al.  Small crater modification on Meridiani Planum and implications for erosion rates and climate change on Mars , 2014 .

[7]  Kenneth L. Tanaka,et al.  The digital global geologic map of Mars: Chronostratigraphic ages, topographic and crater morphologic characteristics, and updated resurfacing history☆ , 2014 .

[8]  N. Thomas,et al.  Potential desiccation cracks on Mars: A synthesis from modeling, analogue-field studies, and global observations , 2014 .

[9]  J. Grant,et al.  Sedimentology and climatic environment of alluvial fans in the martian Saheki crater and a comparison with terrestrial fans in the Atacama Desert , 2014 .

[10]  P. Christensen,et al.  The formation of infilled craters on Mars: Evidence for widespread impact induced decompression of the early martian mantle? , 2014 .

[11]  J. Grotzinger,et al.  Volumetric estimates of ancient water on Mount Sharp based on boxwork deposits, Gale Crater, Mars , 2014 .

[12]  V. Ansan,et al.  3D morphometry of valley networks on Mars from HRSC/MEX DEMs: Implications for climatic evolution through time , 2013 .

[13]  G. Michael Planetary surface dating from crater size–frequency distribution measurements: Multiple resurfacing episodes and differential isochron fitting , 2013 .

[14]  J. Moore,et al.  Hellas as a Possible Site of Ancient Ice-Covered Lakes on Mars , 2013 .

[15]  Jean-Pierre Bibring,et al.  Hydrous minerals on Mars as seen by the CRISM and OMEGA imaging spectrometers: Updated global view , 2013 .

[16]  A. D. Rogers,et al.  Evidence for Noachian flood volcanism in Noachis Terra, Mars, and the possible role of Hellas impact basin tectonics , 2013 .

[17]  Jean-Pierre Bibring,et al.  Global investigation of olivine on Mars: Insights into crust and mantle compositions , 2013 .

[18]  Jean-Pierre Bibring,et al.  Automated processing of planetary hyperspectral datasets for the extraction of weak mineral signatures and applications to CRISM observations of hydrated silicates on Mars , 2013 .

[19]  Jean-Pierre Bibring,et al.  Global maps of anhydrous minerals at the surface of Mars from OMEGA/MEx , 2012 .

[20]  S. Murchie,et al.  Characterization of hydrated silicate-bearing outcrops in Tyrrhena Terra, Mars: Implications to the alteration history of Mars , 2012 .

[21]  Paul B. Niles,et al.  Atmospheric origin of martian interior layered deposits: Links to climate change and the global sulfur cycle , 2012 .

[22]  N. Mangold,et al.  A chronology of early Mars climatic evolution from impact crater degradation , 2012 .

[23]  Gregory Michael,et al.  Planetary surface dating from crater size–frequency distribution measurements: Spatial randomness and clustering , 2012 .

[24]  F. Poulet,et al.  Mineralogical evidence for major aqueous activity in the northern Hellas province, Mars , 2011 .

[25]  S. V. Gasselt,et al.  Map-projection-independent crater size-frequency determination in GIS environments—New software tool for ArcGIS , 2011 .

[26]  P. Bierman,et al.  Understanding Earth’s eroding surface with 10Be , 2011 .

[27]  R. Fergason,et al.  Regional-scale stratigraphy of surface units in Tyrrhena and Iapygia Terrae, Mars: Insights into highland crustal evolution and alteration history , 2011 .

[28]  J. Moore,et al.  Late Hesperian to early Amazonian midlatitude Martian valleys: Evidence from Newton and Gorgonum basins , 2011 .

[29]  K. Lewis,et al.  Early Mars hydrology: 2. Hydrological evolution in the Noachian and Hesperian epochs , 2011 .

[30]  Alfred S. McEwen,et al.  Constraints on ripple migration at Meridiani Planum from Opportunity and HiRISE observations of fresh craters , 2010 .

[31]  B. Hynek,et al.  Ancient ocean on Mars supported by global distribution of deltas and valleys , 2010 .

[32]  R. Greeley,et al.  The Circum-Hellas Volcanic Province, Mars: Assessment of wrinkle-ridged plains , 2010 .

[33]  G. Neukum,et al.  Planetary surface dating from crater size-frequency distribution measurements: Partial resurfacing events and statistical age uncertainty , 2010 .

[34]  M. Broxton,et al.  Ames Stereo Pipeline, NASA's Open Source Automated Stereogrammetry Software , 2010 .

[35]  A. McEwen,et al.  Sublacustrine depositional fans in southwest Melas Chasma , 2009 .

[36]  R. Greeley,et al.  The Circum-Hellas Volcanic Province, Mars: Overview , 2009 .

[37]  Jean-Pierre Bibring,et al.  Quantitative compositional analysis of martian mafic regions using the MEx/OMEGA reflectance data. 2. Petrological implications , 2009 .

[38]  J. Mustard,et al.  Quantitative compositional analysis of martian mafic regions using the MEx/OMEGA reflectance data 1. Methodology, uncertainties and examples of application , 2009 .

[39]  O. Aharonson,et al.  Geologic context of in situ rocky exposures in Mare Serpentis, Mars: Implications for crust and regolith evolution in the cratered highlands , 2009 .

[40]  Patrick C. McGuire,et al.  Mineralogy of Juventae Chasma: Sulfates in the light‐toned mounds, mafic minerals in the bedrock, and hydrated silica and hydroxylated ferric sulfate on the plateau , 2009 .

[41]  John F. Mustard,et al.  Orbital Identification of Carbonate-Bearing Rocks on Mars , 2008 .

[42]  Randolph L. Kirk,et al.  Degradation of Victoria crater, Mars , 2008 .

[43]  K. Gwinner,et al.  Evolution and depositional environments of the Eberswalde fan delta, Mars , 2008 .

[44]  N. Izenberg,et al.  Hydrated silicate minerals on Mars observed by the Mars Reconnaissance Orbiter CRISM instrument , 2008, Nature.

[45]  J. Head,et al.  The timing of martian valley network activity : Constraints from buffered crater counting , 2008 .

[46]  S. Werner The early martian evolution—Constraints from basin formation ages , 2008 .

[47]  E. Asphaug,et al.  Catalogue of large alluvial fans in martian impact craters , 2008 .

[48]  M. Broxton,et al.  The Ames Stereo Pipeline: Automated 3D Surface Reconstruction from Orbital Imagery , 2008 .

[49]  J. Grant,et al.  Geomorphic and stratigraphic analysis of Crater Terby and layered deposits north of Hellas basin, Mars , 2007 .

[50]  Jean-Pierre Bibring,et al.  Hydration state of the Martian surface as seen by Mars Express OMEGA: 2. H2O content of the surface , 2007 .

[51]  Patrick Pinet,et al.  Martian surface mineralogy from Observatoire pour la Minéralogie, l'Eau, les Glaces et l'Activité on board the Mars Express spacecraft (OMEGA/MEx): Global mineral maps , 2007 .

[52]  Raymond E. Arvidson,et al.  Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on Mars Reconnaissance Orbiter (MRO) , 2007 .

[53]  L. Edwards,et al.  Context Camera Investigation on board the Mars Reconnaissance Orbiter , 2007 .

[54]  A. McEwen,et al.  Mars Reconnaissance Orbiter's High Resolution Imaging Science Experiment (HiRISE) , 2007 .

[55]  J. Grant,et al.  Erosion rates at the Mars Exploration Rover landing sites and long‐term climate change on Mars , 2006 .

[56]  J. A. Grant,et al.  Distribution of rocks on the Gusev Plains and on Husband Hill, Mars , 2006 .

[57]  T. Encrenaz,et al.  Global Mineralogical and Aqueous Mars History Derived from OMEGA/Mars Express Data , 2006, Science.

[58]  J. Grant,et al.  Crater gradation in Gusev crater and Meridiani Planum, Mars , 2006 .

[59]  M. Summerfield A tale of two scales, or the two geomorphologies , 2005 .

[60]  R. E. Arvidson,et al.  Phyllosilicates on Mars and implications for early martian climate , 2005, Nature.

[61]  V. Hamilton,et al.  Evidence for extensive, olivine-rich bedrock on Mars , 2005 .

[62]  William K. Hartmann,et al.  Martian cratering 8: Isochron refinement and the chronology of Mars , 2005 .

[63]  J. Moore,et al.  Large alluvial fans on Mars , 2005 .

[64]  D. Crown,et al.  Styles and timing of volatile-driven activity in the eastern Hellas region of Mars , 2005 .

[65]  R. Jaumann,et al.  HRSC: the High Resolution Stereo Camera of Mars Express , 2004 .

[66]  R. Clark,et al.  Discovery of Olivine in the Nili Fossae Region of Mars , 2003, Science.

[67]  A. McEwen,et al.  Morphology and Composition of the Surface of Mars: Mars Odyssey THEMIS Results , 2003, Science.

[68]  M. Malin,et al.  Martian sedimentary rock stratigraphy: Outcrops and interbedded craters of northwest Sinus Meridiani and southwest Arabia Terra , 2002 .

[69]  Alan D. Howard,et al.  The case for rainfall on a warm, wet early Mars , 2002 .

[70]  Joshua L. Bandfield,et al.  Global mineral distributions on Mars , 2002 .

[71]  R. Phillips,et al.  Evidence for extensive denudation of the Martian highlands , 2001 .

[72]  William K. Hartmann,et al.  Cratering Chronology and the Evolution of Mars , 2001 .

[73]  Boris A. Ivanov,et al.  Mars/Moon Cratering Rate Ratio Estimates , 2001 .

[74]  L. Marinangeli,et al.  Terraces and Gilbert‐type deltas in crater lakes in Ismenius Lacus and Memnonia (Mars) , 2000 .

[75]  Joshua L. Bandfield,et al.  A Global View of Martian Surface Compositions from MGS-TES , 2000 .

[76]  N. Bridges,et al.  Erosion rates on Mars and implications for climate change: Constraints from the Pathfinder landing site , 2000 .

[77]  David E. Smith,et al.  The global topography of Mars and implications for surface evolution. , 1999, Science.

[78]  A. McEwen,et al.  Evidence for recent volcanism on Mars from crater counts , 1999, Nature.

[79]  R. Clark,et al.  Results from the Mars Global Surveyor Thermal Emission Spectrometer. , 1998, Science.

[80]  R. Craddock,et al.  Crater morphometry and modification in the Sinus Sabaeus and Margaritifer Sinus regions of Mars , 1997 .

[81]  Kenneth L. Tanaka,et al.  Geology and landscape evolution of the Hellas region of Mars , 1995 .

[82]  J. P. Kauahikaua,et al.  Emplacement and inflation of pahoehoe sheet flows: observations and measurements of active lava flows on Kilauea volcano, Hawaii , 1994 .

[83]  M. Thiry,et al.  Clay mineral distribution related to rift activity, sea-level changes and paleoceanography in the Cretaceous of the Atlantic Ocean , 1993, Clay Minerals.

[84]  R. Craddock,et al.  Geomorphic evolution of the Martian highlands through ancient fluvial processes , 1993 .

[85]  R. D. Hon,et al.  Martian lake basins and lacustrine plains , 1992 .

[86]  Kenneth L. Tanaka,et al.  Tectonic history of the Syria Planum province of Mars , 1988 .

[87]  T. Miller,et al.  Thermal genesis of dissolution caves in the Black Hills, South Dakota , 1987 .

[88]  Kenneth L. Tanaka The stratigraphy of Mars , 1986 .

[89]  I. Saunders,et al.  Rates of surface processes on slopes, slope retreat and denudation , 1983 .

[90]  M. Leake The intercrater plains of Mercury and the Moon: Their nature, origin and role in terrestrial planet evolution. Remote sensing and physical data and the Moon. Ph.D. Thesis , 1982 .

[91]  James W. Head,et al.  Volcanism on Mars , 1981, Nature.

[92]  R. Arvidson,et al.  Differential aeolian redistribution rates on Mars , 1979, Nature.

[93]  Michael C. Malin,et al.  Landform degradation on Mercury, the Moon, and Mars: Evidence from crater depth/diameter relationships , 1977 .

[94]  D. Wilhelms Comparison of Martian and lunar geologic provinces , 1974 .

[95]  D. F. Ritter,et al.  Rates of regional denudation in the United States , 1964 .

[96]  S. Murchie,et al.  Stratigraphy, mineralogy, and origin of layered deposits inside Terby crater, Mars , 2011 .

[97]  J. Moore,et al.  Geologic Map of Part of the Western Hellas Planitia, Mars , 2007 .

[98]  G. Schwarze,et al.  The high-resolution stereo camera ( HRSC ) experiment on Mars Express : Instrument aspects and experiment conduct from interplanetary cruise through the nominal mission , 2007 .

[99]  V. Ansan,et al.  Detailed study of an hydrological system of valleys, a delta and lakes in the Southwest Thaumasia region, Mars , 2006 .

[100]  M. Malin,et al.  The Thermal Emission Imaging System (THEMIS) for the Mars 2001 Odyssey Mission , 2004 .

[101]  Kenneth L. Tanaka,et al.  Geologic Map of the Hellas Region of Mars , 2001 .

[102]  J. Bandfield,et al.  Multiple emission angle surface–atmosphere separations of thermal emission spectrometer data , 2001 .

[103]  M. Carr Post-Noachian Erosion Rates: Implications for Mars Climate Change , 1992 .

[104]  Ronald Greeley,et al.  Geologic map of the eastern equatorial region of Mars , 1987 .

[105]  G. Kukla Loess stratigraphy in central China , 1987 .

[106]  J. Whittow The Penguin dictionary of physical geography , 1984 .

[107]  M. Malin Comparison of volcanic features of Elysium (Mars) and Tibesti (Earth). Age of Martian channels. Nature and origin of intercrater plains on Mars , 1976 .

[108]  D. H. Scott,et al.  Geologic map of Mars , 1976 .

[109]  D. Potter Geologic map of the Hellas Quadrangle of Mars , 1976 .

[110]  D. Netoff Polygonal Jointing in Sandstone Near Boulder, Colorado , 1971 .