Influence of Eddy-Generation Mechanism on the Characteristic of On-Source Fire Whirl

[1]  A. Yuen,et al.  Fire Risk Assessment of Combustible Exterior Cladding Using a Collective Numerical Database , 2019, Fire.

[2]  Guan Heng Yeoh,et al.  Fire scene investigation of an arson fire incident using computational fluid dynamics based fire simulation , 2014 .

[3]  John T. Snow,et al.  Intense Atmospheric Vortices Associated with a 1000 MW Fire , 1980 .

[4]  Hai Wang Formation of nascent soot and other condensed-phase materials in flames , 2011 .

[5]  Kohyu Satoh,et al.  Buoyant pool fires under imposed circulations before the formation of fire whirls , 2015 .

[6]  G. Nathan,et al.  Instantaneous Temperature Imaging of Diffusion Flames Using Two-Line Atomic Fluorescence , 2010, Applied spectroscopy.

[7]  Qing Nian Chan,et al.  External irradiation effect on the growth and evolution of in-flame soot species , 2016 .

[8]  J. Pereira,et al.  On the influence of circulation on fire whirl height , 2019, Fire Safety Journal.

[9]  W. Yang,et al.  Numerical study of fire spread using the level-set method with large eddy simulation incorporating detailed chemical kinetics gas-phase combustion model , 2018, J. Comput. Sci..

[10]  T. Kubota,et al.  Entrainment in Fire Plumes , 1981 .

[11]  Scott L. Goodrick,et al.  Review of Vortices in Wildland Fire , 2011 .

[12]  Tracie Barber,et al.  LES and Multi-Step Chemical Reaction in Compartment Fires , 2015 .

[13]  V. Timchenko,et al.  Predicting the fire spread rate of a sloped pine needle board utilizing pyrolysis modelling with detailed gas-phase combustion , 2018, International Journal of Heat and Mass Transfer.

[14]  Kohyu Satoh,et al.  Temperature, velocity and air entrainment of fire whirl plume: A comprehensive experimental investigation , 2015 .

[16]  Qing Nian Chan,et al.  Sensitivity Analysis of Key Parameters for Population Balance Based Soot Model for Low-Speed Diffusion Flames , 2019, Energies.

[17]  Naian Liu,et al.  Flame precession of fire whirls: A further experimental study , 2016 .

[18]  Guan Heng Yeoh,et al.  Fire scene reconstruction of a furnished compartment room in a house fire , 2014 .

[19]  Tracie Barber,et al.  Importance of detailed chemical kinetics on combustion and soot modelling of ventilated and under-ventilated fires in compartment , 2016 .

[20]  S. Hostikka,et al.  Modeling and simulation of liquid pool fires with in-depth radiation absorption and heat transfer , 2016 .

[21]  Richard I. Emori,et al.  Model experiment of hazardous forest fire whirl , 1982 .

[22]  Guan Heng Yeoh,et al.  Study of three LES subgrid-scale turbulence models for predictions of heat and mass transfer in large-scale compartment fires , 2016 .

[23]  Michael E. Mueller,et al.  Experimental and computational study of soot evolution in a turbulent nonpremixed bluff body ethylene flame , 2013 .

[24]  Kozo Saito,et al.  Inclined fire whirls , 2011 .

[25]  Qing Nian Chan,et al.  On the influences of key modelling constants of large eddy simulations for large-scale compartment fires predictions , 2017 .

[26]  W. Yao,et al.  Numerical Modeling of Liquid n-heptane Pool Fires based on Heat Feedback Equilibrium☆ , 2013 .

[27]  Jesse S. Lozano,et al.  Effect of flow circulation on combustion dynamics of fire whirl , 2013 .

[28]  A. Muraszew,et al.  The fire whirl phenomenon , 1979 .

[29]  Wang,et al.  Computational Study of Wet Steam Flow to Optimize Steam Ejector Efficiency for Potential Fire Suppression Application , 2019, Applied Sciences.

[30]  Chun H. Wang,et al.  MXene/chitosan nanocoating for flexible polyurethane foam towards remarkable fire hazards reductions. , 2020, Journal of hazardous materials.

[31]  Yueling Bai,et al.  An experimental study on thermal radiation of fire whirl , 2017 .

[32]  Yasuhiro Hayashi,et al.  Experimental Study on Flame Height and Radiant Heat of Fire Whirls , 2016 .

[33]  Kohyu Satoh,et al.  Experimental research on combustion dynamics of medium-scale fire whirl , 2011 .

[34]  E. Oran,et al.  From fire whirls to blue whirls and combustion with reduced pollution , 2016, Proceedings of the National Academy of Sciences.

[35]  Timothy Bo Yuan Chen,et al.  Recent progress in bio-based aerogel absorbents for oil/water separation , 2019, Cellulose.

[36]  W. Yang,et al.  Numerical study of the development and angular speed of a small-scale fire whirl , 2018, J. Comput. Sci..

[37]  Qing Nian Chan,et al.  Natural Ventilated Smoke Control Simulation Case Study Using Different Settings of Smoke Vents and Curtains in a Large Atrium , 2019, Fire.

[38]  A. Smits,et al.  Scaling of a small scale burner fire whirl , 2016 .

[39]  W. Jones,et al.  Calculation methods for reacting turbulent flows: A review , 1982 .

[40]  Timothy Bo Yuan Chen,et al.  Characterisation of soot particle size distribution through population balance approach and soot diagnostic techniques for a buoyant non-premixed flame , 2020 .

[41]  Kozo Saito,et al.  The burning rate’s effect on the flame length of weak fire whirls , 2011 .

[42]  Qing Nian Chan,et al.  Comparison of detailed soot formation models for sooty and non-sooty flames in an under-ventilated ISO room , 2017 .

[43]  A. Smits,et al.  Measurement of the Flow Field of Fire Whirl , 2016 .

[44]  Keng Hoo Chuah,et al.  The prediction of flame heights and flame shapes of small fire whirls , 2007 .

[45]  D. Tree,et al.  Soot processes in compression ignition engines , 2007 .

[46]  Qing Nian Chan,et al.  Automated determination of size and morphology information from soot transmission electron microscope (TEM)-generated images , 2016, Journal of Nanoparticle Research.

[47]  Qiong Liu,et al.  Burn-out time data analysis on interaction effects among multiple fires in fire arrays , 2007 .

[48]  Kozo Saito,et al.  Reconstruction of fire whirls using scale models , 1991 .

[49]  G. Yeoh,et al.  Interface decoration of exfoliated MXene ultra-thin nanosheets for fire and smoke suppressions of thermoplastic polyurethane elastomer. , 2019, Journal of hazardous materials.

[50]  A. Yuen,et al.  Functionalization of MXene Nanosheets for Polystyrene towards High Thermal Stability and Flame Retardant Properties , 2019, Polymers.