Cadmium effects on superoxide dismutase 1 in human cells revealed by NMR

[1]  S. Antonyuk,et al.  The cysteine-reactive small molecule ebselen facilitates effective SOD1 maturation , 2018, Nature Communications.

[2]  L. Banci,et al.  A molecular chaperone activity of CCS restores the maturation of SOD1 fALS mutants , 2017, Scientific Reports.

[3]  S. Antonyuk,et al.  A faulty interaction between SOD1 and hCCS in neurodegenerative disease , 2016, Scientific Reports.

[4]  L. Banci,et al.  Characterization of proteins by in-cell NMR spectroscopy in cultured mammalian cells , 2016, Nature Protocols.

[5]  T. Kimura,et al.  The Functions of Metallothionein and ZIP and ZnT Transporters: An Overview and Perspective , 2016, International journal of molecular sciences.

[6]  L. Banci,et al.  Direct structural evidence of protein redox regulation obtained by in-cell NMR. , 2016, Biochimica et biophysica acta.

[7]  Rutao Liu,et al.  Molecular mechanism on cadmium-induced activity changes of catalase and superoxide dismutase. , 2015, International journal of biological macromolecules.

[8]  L. Banci,et al.  In-cell NMR reveals potential precursor of toxic species from SOD1 fALS mutants , 2014, Nature Communications.

[9]  D. Milardi,et al.  Zinc to cadmium replacement in the prokaryotic zinc-finger domain. , 2014, Metallomics : integrated biometal science.

[10]  I. Bertini,et al.  Atomic-resolution monitoring of protein maturation in live human cells by NMR , 2013, Nature chemical biology.

[11]  K. Smeets,et al.  Cadmium-Induced Pathologies: Where Is the Oxidative Balance Lost (or Not)? , 2013, International journal of molecular sciences.

[12]  P. Oteiza,et al.  Zinc and the modulation of redox homeostasis. , 2012, Free radical biology & medicine.

[13]  W. Schaffner,et al.  The taste of heavy metals: gene regulation by MTF-1. , 2012, Biochimica et biophysica acta.

[14]  I. Bertini,et al.  Human superoxide dismutase 1 (hSOD1) maturation through interaction with human copper chaperone for SOD1 (hCCS) , 2012, Proceedings of the National Academy of Sciences.

[15]  R. Scandurra,et al.  Zinc to cadmium replacement in the A. thaliana SUPERMAN Cys₂ His₂ zinc finger induces structural rearrangements of typical DNA base determinant positions. , 2011, Biopolymers.

[16]  I. Bertini,et al.  In-cell NMR in E. coli to Monitor Maturation Steps of hSOD1 , 2011, PloS one.

[17]  M. Stillman,et al.  The "magic numbers" of metallothionein. , 2011, Metallomics : integrated biometal science.

[18]  D. Crane,et al.  Mitochondria, reactive oxygen species and cadmium toxicity in the kidney. , 2010, Toxicology letters.

[19]  J. Moulis Cellular mechanisms of cadmium toxicity related to the homeostasis of essential metals , 2010, BioMetals.

[20]  N. Sarwar,et al.  Role of mineral nutrition in minimizing cadmium accumulation by plants. , 2010, Journal of the science of food and agriculture.

[21]  M. Plusquin,et al.  Cadmium stress: an oxidative challenge , 2010, BioMetals.

[22]  P. Bruni,et al.  Transforming Growth Factor-β1 Induces Transdifferentiation of Myoblasts into Myofibroblasts via Up-Regulation of Sphingosine Kinase-1/S1P3 Axis , 2010, Molecular biology of the cell.

[23]  M. de Ley,et al.  Protective effect of metallothionein on oxidative stress-induced DNA damage , 2010, Free radical research.

[24]  F. Thévenod Cadmium and cellular signaling cascades: to be or not to be? , 2009, Toxicology and applied pharmacology.

[25]  Jie Liu,et al.  Metallothionein protection of cadmium toxicity. , 2009, Toxicology and applied pharmacology.

[26]  Lars Järup,et al.  Current status of cadmium as an environmental health problem. , 2009, Toxicology and applied pharmacology.

[27]  H. Nakagawa,et al.  Biological half-life of cadmium in the urine of inhabitants after cessation of cadmium exposure , 2009, Biomarkers.

[28]  Thomas D. Schmittgen,et al.  Analyzing real-time PCR data by the comparative CT method , 2008, Nature Protocols.

[29]  I. Bertini,et al.  Metal-free superoxide dismutase forms soluble oligomers under physiological conditions: A possible general mechanism for familial ALS , 2007, Proceedings of the National Academy of Sciences.

[30]  D. Averbeck,et al.  Cadmium: cellular effects, modifications of biomolecules, modulation of DNA repair and genotoxic consequences (a review). , 2006, Biochimie.

[31]  Weixian Lu,et al.  A time- and cost-efficient system for high-level protein production in mammalian cells. , 2006, Acta crystallographica. Section D, Biological crystallography.

[32]  T. O’Halloran,et al.  Activation of superoxide dismutases: putting the metal to the pedal. , 2006, Biochimica et biophysica acta.

[33]  T. O’Halloran,et al.  Posttranslational modifications in Cu,Zn-superoxide dismutase and mutations associated with amyotrophic lateral sclerosis. , 2006, Antioxidants & redox signaling.

[34]  Yen‐Hua Huang,et al.  Effects of cadmium on structure and enzymatic activity of Cu,Zn‐SOD and oxidative status in neural cells , 2006, Journal of cellular biochemistry.

[35]  J. Valentine,et al.  Copper-zinc superoxide dismutase and amyotrophic lateral sclerosis. , 2005, Annual review of biochemistry.

[36]  I. Bertini,et al.  The Unusually Stable Quaternary Structure of Human Cu,Zn-Superoxide Dismutase 1 Is Controlled by Both Metal Occupancy and Disulfide Status* , 2004, Journal of Biological Chemistry.

[37]  T. O’Halloran,et al.  Oxygen‐induced maturation of SOD1: a key role for disulfide formation by the copper chaperone CCS , 2004, The EMBO journal.

[38]  Robert H. Brown,et al.  Amyotrophic Lateral Sclerosis-Associated SOD1 Mutant Proteins Bind and Aggregate with Bcl-2 in Spinal Cord Mitochondria , 2004, Neuron.

[39]  O. Fardel,et al.  Cadmium induces caspase-independent apoptosis in liver Hep3B cells: role for calcium in signaling oxidative stress-related impairment of mitochondria and relocation of endonuclease G and apoptosis-inducing factor. , 2004, Free radical biology & medicine.

[40]  Michael R. Moore,et al.  Adverse Health Effects of Chronic Exposure to Low-Level Cadmium in Foodstuffs and Cigarette Smoke , 2004, Environmental health perspectives.

[41]  M. Brzóska,et al.  Antioxidant enzymes activity and lipid peroxidation in liver and kidney of rats exposed to cadmium and ethanol. , 2004, Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.

[42]  L. Tibell,et al.  Common denominator of Cu/Zn superoxide dismutase mutants associated with amyotrophic lateral sclerosis: Decreased stability of the apo state , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[43]  P. Coyle,et al.  Metallothionein: the multipurpose protein , 2002, Cellular and Molecular Life Sciences CMLS.

[44]  J. Klein,et al.  Metallothionein Inhibits Peroxynitrite-induced DNA and Lipoprotein Damage* , 2000, The Journal of Biological Chemistry.

[45]  A. Lamb,et al.  Heterodimer formation between superoxide dismutase and its copper chaperone. , 2000, Biochemistry.

[46]  G. Andrews,et al.  Regulation of metallothionein gene expression by oxidative stress and metal ions. , 2000, Biochemical pharmacology.

[47]  R. Casareno,et al.  The Copper Chaperone CCS Directly Interacts with Copper/Zinc Superoxide Dismutase* , 1998, The Journal of Biological Chemistry.

[48]  J. Thompson,et al.  Decreased Zinc Affinity of Amyotrophic Lateral Sclerosis‐Associated Superoxide Dismutase Mutants Leads to Enhanced Catalysis of Tyrosine Nitration by Peroxynitrite , 1997, Journal of neurochemistry.

[49]  D. Borchelt,et al.  Superoxide dismutase is an abundant component in cell bodies, dendrites, and axons of motor neurons and in a subset of other neurons. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[50]  S. Pagani,et al.  Reversible and non-denaturing replacement of iron by cadmium in Clostridium pasteurianum ferredoxin. , 1994, European journal of biochemistry.

[51]  E R James,et al.  Superoxide dismutase. , 1994, Parasitology today.

[52]  J. Haines,et al.  Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis , 1993, Nature.

[53]  E. Getzoff,et al.  Faster superoxide dismutase mutants designed by enhancing electrostatic guidance , 1992, Nature.

[54]  E. Danielsen,et al.  113Cd-NMR investigation of a cadmium-substituted copper, zinc-containing superoxide dismutase from yeast. , 1991, European journal of biochemistry.

[55]  F. Suzuki,et al.  Sensitive enzyme immunoassay for human Cu/Zn superoxide dismutase. , 1990, Clinica chimica acta; international journal of clinical chemistry.

[56]  J. Richardson,et al.  Determination and analysis of the 2 A-structure of copper, zinc superoxide dismutase. , 1980, Journal of molecular biology.

[57]  I. Fridovich,et al.  Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). , 1969, The Journal of biological chemistry.

[58]  P. Brandt,et al.  Mitochondria , 1959, The Journal of Biophysical and Biochemical Cytology.