A three‐dimensional finite element method with arbitrary polyhedral elements

The ‘variable-element-topology finite element method’ (VETFEM) is a finite-element-like Galerkin approximation method in which the elements may take arbitrary polyhedral form. A complete development of the VETFEM is given here for both two and three dimensions. A kinematic enhancement of the displacement-based formulation is also given, which effectively treats the case of near-incompressibility. Convergence of the method is discussed and then illustrated by way of a 2D problem in elastostatics. Also, the VETFEM's performance is compared to that of the conventional FEM with eight-node hex elements in a 3D finite-deformation elastic–plastic problem. The main attraction of the new method is its freedom from the strict rules of construction of conventional finite element meshes, making automatic mesh generation on complex domains a significantly simpler matter. Copyright © 2006 John Wiley & Sons, Ltd.

[1]  Ted Belytschko,et al.  Volumetric locking in the element free Galerkin method , 1999 .

[2]  Manuel Doblaré,et al.  On solving large strain hyperelastic problems with the natural element method , 2005 .

[3]  Miguel Ángel Martínez,et al.  Overview and recent advances in natural neighbour galerkin methods , 2003 .

[4]  J. C. Simo,et al.  A CLASS OF MIXED ASSUMED STRAIN METHODS AND THE METHOD OF INCOMPATIBLE MODES , 1990 .

[5]  M. Rashid Incremental kinematics for finite element applications , 1993 .

[6]  T. Belytschko,et al.  THE NATURAL ELEMENT METHOD IN SOLID MECHANICS , 1998 .

[7]  Friedrich Stummel,et al.  The Generalized Patch Test , 1979 .

[8]  Ted Belytschko,et al.  THE ELEMENT FREE GALERKIN METHOD FOR DYNAMIC PROPAGATION OF ARBITRARY 3-D CRACKS , 1999 .

[9]  O. Zienkiewicz,et al.  The finite element patch test revisited a computer test for convergence, validation and error estimates , 1997 .

[10]  O. C. Zienkiewicz,et al.  The patch test—a condition for assessing FEM convergence , 1986 .

[11]  I. Babuska,et al.  The generalized finite element method , 2001 .

[12]  I. Babuska,et al.  Acta Numerica 2003: Survey of meshless and generalized finite element methods: A unified approach , 2003 .

[13]  B. Moran,et al.  Natural neighbour Galerkin methods , 2001 .

[14]  N. Sukumar,et al.  Conforming polygonal finite elements , 2004 .

[15]  Robert L. Taylor,et al.  Improved versions of assumed enhanced strain tri-linear elements for 3D finite deformation problems☆ , 1993 .

[16]  Manuel Doblaré,et al.  Imposing essential boundary conditions in the natural element method by means of density-scaled?-shapes , 2000 .

[17]  David A. Field The legacy of automatic mesh generation from solid modeling , 1995, Comput. Aided Geom. Des..

[18]  Jiun-Shyan Chen,et al.  A stabilized conforming nodal integration for Galerkin mesh-free methods , 2001 .

[19]  Steven J. Owen,et al.  A Survey of Unstructured Mesh Generation Technology , 1998, IMR.

[20]  M. Rashid,et al.  Polynomial approximation of shape function gradients from element geometries , 2002 .

[21]  P. M. Gullett,et al.  On a finite element method with variable element topology , 2000 .

[22]  Kenji Shimada,et al.  The 8th International Meshing Roundtable Special Issue: Advances in Mesh Generation , 2001, Comput. Aided Des..

[23]  B. Moran,et al.  Stabilized conforming nodal integration in the natural‐element method , 2004 .

[24]  T. Hughes Generalization of selective integration procedures to anisotropic and nonlinear media , 1980 .

[25]  Eugenio Oñate,et al.  The meshless finite element method , 2003 .

[26]  Weimin Han,et al.  Reproducing kernel element method. Part I: Theoretical formulation , 2004 .

[27]  D. Owen,et al.  Design of simple low order finite elements for large strain analysis of nearly incompressible solids , 1996 .

[28]  Elías Cueto,et al.  Modelling three‐dimensional piece‐wise homogeneous domains using the α‐shape‐based natural element method , 2002 .

[29]  K. Atkinson,et al.  Theoretical Numerical Analysis: A Functional Analysis Framework , 2001 .

[30]  Elías Cueto,et al.  Numerical integration in Natural Neighbour Galerkin methods , 2004 .

[31]  I. Babuska,et al.  The design and analysis of the Generalized Finite Element Method , 2000 .

[32]  Zhongci Shi The F-E-M test for convergence of nonconforming finite elements , 1987 .

[33]  John F. Peters,et al.  Application of the 2-D constant strain assumption to FEM elements consisting of an arbitrary number of nodes , 2003 .

[34]  Marco Viceconti,et al.  Automatic generation of finite element meshes from computed tomography data. , 2003, Critical reviews in biomedical engineering.