A three‐dimensional finite element method with arbitrary polyhedral elements
暂无分享,去创建一个
[1] Ted Belytschko,et al. Volumetric locking in the element free Galerkin method , 1999 .
[2] Manuel Doblaré,et al. On solving large strain hyperelastic problems with the natural element method , 2005 .
[3] Miguel Ángel Martínez,et al. Overview and recent advances in natural neighbour galerkin methods , 2003 .
[4] J. C. Simo,et al. A CLASS OF MIXED ASSUMED STRAIN METHODS AND THE METHOD OF INCOMPATIBLE MODES , 1990 .
[5] M. Rashid. Incremental kinematics for finite element applications , 1993 .
[6] T. Belytschko,et al. THE NATURAL ELEMENT METHOD IN SOLID MECHANICS , 1998 .
[7] Friedrich Stummel,et al. The Generalized Patch Test , 1979 .
[8] Ted Belytschko,et al. THE ELEMENT FREE GALERKIN METHOD FOR DYNAMIC PROPAGATION OF ARBITRARY 3-D CRACKS , 1999 .
[9] O. Zienkiewicz,et al. The finite element patch test revisited a computer test for convergence, validation and error estimates , 1997 .
[10] O. C. Zienkiewicz,et al. The patch test—a condition for assessing FEM convergence , 1986 .
[11] I. Babuska,et al. The generalized finite element method , 2001 .
[12] I. Babuska,et al. Acta Numerica 2003: Survey of meshless and generalized finite element methods: A unified approach , 2003 .
[13] B. Moran,et al. Natural neighbour Galerkin methods , 2001 .
[14] N. Sukumar,et al. Conforming polygonal finite elements , 2004 .
[15] Robert L. Taylor,et al. Improved versions of assumed enhanced strain tri-linear elements for 3D finite deformation problems☆ , 1993 .
[16] Manuel Doblaré,et al. Imposing essential boundary conditions in the natural element method by means of density-scaled?-shapes , 2000 .
[17] David A. Field. The legacy of automatic mesh generation from solid modeling , 1995, Comput. Aided Geom. Des..
[18] Jiun-Shyan Chen,et al. A stabilized conforming nodal integration for Galerkin mesh-free methods , 2001 .
[19] Steven J. Owen,et al. A Survey of Unstructured Mesh Generation Technology , 1998, IMR.
[20] M. Rashid,et al. Polynomial approximation of shape function gradients from element geometries , 2002 .
[21] P. M. Gullett,et al. On a finite element method with variable element topology , 2000 .
[22] Kenji Shimada,et al. The 8th International Meshing Roundtable Special Issue: Advances in Mesh Generation , 2001, Comput. Aided Des..
[23] B. Moran,et al. Stabilized conforming nodal integration in the natural‐element method , 2004 .
[24] T. Hughes. Generalization of selective integration procedures to anisotropic and nonlinear media , 1980 .
[25] Eugenio Oñate,et al. The meshless finite element method , 2003 .
[26] Weimin Han,et al. Reproducing kernel element method. Part I: Theoretical formulation , 2004 .
[27] D. Owen,et al. Design of simple low order finite elements for large strain analysis of nearly incompressible solids , 1996 .
[28] Elías Cueto,et al. Modelling three‐dimensional piece‐wise homogeneous domains using the α‐shape‐based natural element method , 2002 .
[29] K. Atkinson,et al. Theoretical Numerical Analysis: A Functional Analysis Framework , 2001 .
[30] Elías Cueto,et al. Numerical integration in Natural Neighbour Galerkin methods , 2004 .
[31] I. Babuska,et al. The design and analysis of the Generalized Finite Element Method , 2000 .
[32] Zhongci Shi. The F-E-M test for convergence of nonconforming finite elements , 1987 .
[33] John F. Peters,et al. Application of the 2-D constant strain assumption to FEM elements consisting of an arbitrary number of nodes , 2003 .
[34] Marco Viceconti,et al. Automatic generation of finite element meshes from computed tomography data. , 2003, Critical reviews in biomedical engineering.