Estimation and prediction for power Lindley distribution under progressively type II right censored samples
暂无分享,去创建一个
Mohammad Z. Raqab | Akbar Asgharzadeh | Reza Valiollahi | F. A. Alqallaf | M. Z. Raqab | A. Asgharzadeh | R. Valiollahi | F. Alqallaf
[1] Norman L. Johnson,et al. Life Testing and Early Failure , 1966 .
[2] Miguel A. Sordo,et al. The Log–Lindley distribution as an alternative to the beta regression model with applications in insurance , 2014 .
[3] M. E. Ghitany,et al. Estimation of the Reliability of a Stress-Strength System from Power Lindley Distributions , 2015, Commun. Stat. Simul. Comput..
[4] Donald Geman,et al. Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[5] Saralees Nadarajah,et al. A generalized Lindley distribution , 2011 .
[6] David Lindley,et al. Fiducial Distributions and Bayes' Theorem , 1958 .
[7] Debasis Kundu,et al. Bayesian Inference and Life Testing Plan for the Weibull Distribution in Presence of Progressive Censoring , 2008, Technometrics.
[8] Kapil Kumar,et al. Reliability estimation in Lindley distribution with progressively type II right censored sample , 2011, Math. Comput. Simul..
[9] M. E. Ghitany,et al. Power Lindley distribution and associated inference , 2013, Comput. Stat. Data Anal..
[10] Paul I. Nelson,et al. 15 Prediction of order statistics , 1998 .
[11] N. Balakrishnan,et al. Progressive Censoring: Theory, Methods, and Applications , 2000 .
[12] L. Tierney. Markov Chains for Exploring Posterior Distributions , 1994 .
[13] Ali Dolati,et al. Generalized Lindley Distribution , 2009 .
[14] Narayanaswamy Balakrishnan,et al. Estimation of parameters from progressively censored data using EM algorithm , 2002 .
[15] N. Balakrishnan,et al. On some predictors of times to failure of censored items in progressively censored samples , 2006, Comput. Stat. Data Anal..
[16] Ahmed A. Soliman,et al. Estimation for the exponentiated Weibull model with adaptive Type-II progressive censored schemes , 2016 .
[17] Sylvia Richardson,et al. Markov Chain Monte Carlo in Practice , 1997 .
[18] Ming-Hui Chen,et al. Monte Carlo Estimation of Bayesian Credible and HPD Intervals , 1999 .
[19] D. Rubin,et al. Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .
[20] Sajid Ali,et al. A study of the effect of the loss function on Bayes Estimate, posterior risk and hazard function for Lindley distribution , 2013 .
[21] E. L. Lehmann,et al. Theory of point estimation , 1950 .
[22] Ali Karimnezhad,et al. Bayes, E-Bayes and robust Bayes prediction of a future observation under precautionary prediction loss functions with applications , 2016 .
[23] Mohammad Z. Raqab,et al. Inference for the generalized Rayleigh distribution based on progressively censored data , 2011 .
[24] Luc Devroye,et al. A simple algorithm for generating random variates with a log-concave density , 1984, Computing.
[25] M. Z. Raqab,et al. Statistical inference based on Lindley record data , 2018 .
[26] Debasis Kundu,et al. On Progressively Type-II Censored Two-parameter Rayleigh Distribution , 2016, Commun. Stat. Simul. Comput..
[27] A. Asgharzadeh,et al. Generalized inverse Lindley distribution with application to Danish fire insurance data , 2017 .
[28] S. Cabras,et al. A default Bayesian procedure for the generalized Pareto distribution , 2007 .
[29] Umesh Singh,et al. Estimation and prediction for Type-I hybrid censored data from generalized Lindley distribution , 2016 .
[30] J. Hosking,et al. Parameter and quantile estimation for the generalized pareto distribution , 1987 .
[31] Francisco Louzada,et al. An extended Lindley distribution , 2012 .
[32] Saralees Nadarajah,et al. A new weighted Lindley distribution with application , 2016 .
[33] Hare Krishna,et al. On progressively first failure censored Lindley distribution , 2016, Comput. Stat..
[34] Bander Al-Zahrani,et al. Estimating the parameter of the Lindley distribution under progressive type-II censored data , 2015 .
[35] Pedro Jodrá,et al. Computer generation of random variables with Lindley or Poisson-Lindley distribution via the Lambert W function , 2010, Math. Comput. Simul..
[36] François Chapeau-Blondeau,et al. Numerical evaluation of the Lambert W function and application to generation of generalized Gaussian noise with exponent 1/2 , 2002, IEEE Trans. Signal Process..
[37] William J. Padgett,et al. Parametric and Nonparametric Inference from Record-Breaking Data , 2003 .
[38] Mohammad Z. Raqab,et al. Prediction of the remaining testing time for the generalized Pareto progressive censoring samples with applications to extreme hydrology events , 2018 .