Intraokularlinsen für die mikroinzisionale Kataraktchirurgie

ZusammenfassungEntscheidend für die Inzisionsgröße bei der mikroinzisionalen Kataraktchirurgie (MICS) ist der minimal erreichbare IOL-Durchmesser bei Implantation bzw. der stark davon abhängige äußere Durchmesser des verwendeten Injektorsystems. Heute ist eine Implantation von IOL durch Inzisionen ≤2,0 mm möglich. Um den daraus resultierenden Anforderungen (Faltbarkeit, Stabilität, etc.) gerecht zu werden, müssen die IOL in Material und Design entsprechend optimiert sein. Durch die geringen induzierten Astigmatismen sowie Aberrationen höherer Ordnung ist die Vorhersagbarkeit des refraktiven Ergebnisses der Operation besser als bei Methoden mit größerer Inzision. Daher bieten sich die MICS-Verfahren für die Implantation von IOL mit speziellen Optikdesigns, wie asphärische, torische oder multifokale IOL, an.AbstractIncision size in micro-incisional cataract surgery (MICS) is dependent on the minimal size of the folded or rolled intraocular lens (IOL) during implantation and thus the outer diameter of the injector system used. At present implantations through incisions <2.0 mm are possible. MICS IOLs have to be optimized for this small dimension in terms of material and lens body design. Compared to standard procedures, MICS induces little astigmatism and higher order aberrations. Thus MICS procedures provide better predictability in terms of postoperative refractive results. This is of special interest when implanting advanced optic designs, such as aspheric, toric or multifocal IOLs.

[1]  C. Faschinger Surface abnormalities on hydrophilic acrylic intraocular lenses implanted by an injector , 2001, Journal of cataract and refractive surgery.

[2]  S. Beatty,et al.  Uncorrected visual acuity in the immediate postoperative period following uncomplicated cataract surgery: bimanual microincision cataract surgery versus standard coaxial phacoemulsification , 2009, International Ophthalmology.

[3]  D. Pham,et al.  Aberrationskorrigierte Intraokularlinse für die mikroinzisionale Kataraktchirurgie (MICS) , 2008, Der Ophthalmologe.

[4]  J. Qu,et al.  Changes in corneal wavefront aberrations in microincision and small‐incision cataract surgery , 2008, Journal of cataract and refractive surgery.

[5]  H. Hayashi,et al.  Comparison of the stability of 1‐piece and 3‐piece acrylic intraocular lenses in the lens capsule , 2005, Journal of cataract and refractive surgery.

[6]  A. Dosso,et al.  Outcomes of coaxial microincision cataract surgery versus conventional coaxial cataract surgery , 2008, Journal of cataract and refractive surgery.

[7]  Michael Amon,et al.  Uveal and capsular biocompatibility of hydrophilic acrylic, hydrophobic acrylic, and silicone intraocular lenses , 2002, Journal of cataract and refractive surgery.

[8]  D. Pham,et al.  [Aberration corrected intraocular lens for microincision cataract surgery (MICS). Intraindividual comparison with a conventional lens - 1-year follow-up]. , 2009, Der Ophthalmologe : Zeitschrift der Deutschen Ophthalmologischen Gesellschaft.

[9]  H. Hayashi,et al.  Postoperative corneal shape changes: Microincision versus small‐incision coaxial cataract surgery , 2009, Journal of cataract and refractive surgery.

[10]  Jorge L Alió,et al.  Corneal aberrations after microincision cataract surgery , 2008, Journal of cataract and refractive surgery.

[11]  T. Kohnen,et al.  Inzisionen für die biaxiale und koaxiale mikroinzisionale Kataraktchirurgie , 2010, Der Ophthalmologe.

[12]  P. Pisella,et al.  Intraindividual comparative study of corneal and ocular wavefront aberrations after biaxial microincision versus coaxial small-incision cataract surgery , 2008, British Journal of Ophthalmology.

[13]  Thomas Kohnen,et al.  Optic edge design as long-term factor for posterior capsular opacification rates. , 2008, Ophthalmology.

[14]  N Mamalis,et al.  Complications of intraocular lenses. A historical and histopathological review. , 1984, Survey of ophthalmology.

[15]  David J. Apple,et al.  Posterior capsule opacification. , 1992, Survey of ophthalmology.

[16]  M. Wilczyński,et al.  Comparison of early corneal endothelial cell loss after coaxial phacoemulsification through 1.8 mm microincision and bimanual phacoemulsification through 1.7 mm microincision , 2009, Journal of cataract and refractive surgery.

[17]  J. Alió,et al.  Corneal incision quality: Microincision cataract surgery versus microcoaxial phacoemulsification , 2009, Journal of cataract and refractive surgery.

[18]  V. Deluise COMPLICATIONS OF INTRAOCULAR LENSES , 1987, International ophthalmology clinics.

[19]  A. Lloyd,et al.  Ocular biomaterials and implants. , 2001, Biomaterials.

[20]  M R Dana,et al.  A systematic overview of the incidence of posterior capsule opacification. , 1998, Ophthalmology.

[21]  W. Drexler,et al.  Change in IOL position and capsular bag size with an angulated intraocular lens early after cataract surgery , 2005, Journal of cataract and refractive surgery.

[22]  J. Marshall,et al.  Randomized intraindividual comparison of posterior capsule opacification between a microincision intraocular lens and a conventional intraocular lens , 2009, Journal of cataract and refractive surgery.

[23]  Thomas Kohnen,et al.  Tilt and decentration of spherical and aspheric intraocular lenses: Effect on higher‐order aberrations , 2009, Journal of cataract and refractive surgery.

[24]  S. Saika Relationship between posterior capsule opacification and intraocular lens biocompatibility , 2004, Progress in Retinal and Eye Research.

[25]  Robert Montés-Micó,et al.  Retinal image quality after microincision intraocular lens implantation , 2005, Journal of cataract and refractive surgery.

[26]  H. Hayashi,et al.  Decentration and tilt of polymethyl methacrylate, silicone, and acrylic soft intraocular lenses. , 1997, Ophthalmology.

[27]  A. Synder,et al.  Comparison of surgically induced astigmatism after coaxial phacoemulsification through 1.8 mm microincision and bimanual phacoemulsification through 1.7 mm microincision , 2009, Journal of cataract and refractive surgery.

[28]  C. Kaufmann,et al.  Astigmatic neutrality in biaxial microincision cataract surgery , 2009, Journal of cataract and refractive surgery.

[29]  J. Alió,et al.  Visual outcome of microincision cataract surgery with implantation of an Acri.Smart lens , 2005, Journal of cataract and refractive surgery.

[30]  O. Findl,et al.  Interventions for preventing posterior capsule opacification. , 2010, Cochrane Database of Systematic Reviews.

[31]  O. K. Klaproth,et al.  Incision sizes before and after implantation of SN60WF intraocular lenses using the Monarch injector system with C and D cartridges , 2008, Journal of cataract and refractive surgery.

[32]  E. Fabian,et al.  Technologien, Techniken und Taktiken für die mikroinzisionale Kataraktchirurgie , 2010, Der Ophthalmologe.