Lipid and small-molecule display by CD1 and MR1

[1]  E. Adams,et al.  Human gamma delta T cells: Evolution and ligand recognition. , 2015, Cellular immunology.

[2]  J. McCluskey,et al.  MR1 presentation of vitamin B-based metabolite ligands. , 2015, Current opinion in immunology.

[3]  O. Lantz,et al.  In Vitro and In Vivo Analysis of the Gram-Negative Bacteria–Derived Riboflavin Precursor Derivatives Activating Mouse MAIT Cells , 2015, The Journal of Immunology.

[4]  James McCluskey,et al.  T cell antigen receptor recognition of antigen-presenting molecules. , 2015, Annual review of immunology.

[5]  Thi Kim Anh Nguyen,et al.  Expression Patterns of Bovine CD1 In Vivo and Assessment of the Specificities of the Anti-Bovine CD1 Antibodies , 2015, PloS one.

[6]  G. Ogg,et al.  Bee venom processes human skin lipids for presentation by CD1a , 2015, The Journal of experimental medicine.

[7]  Jamie Rossjohn,et al.  αβ T cell antigen receptor recognition of CD1a presenting self lipid ligands , 2015, Nature Immunology.

[8]  C. Fernandez,et al.  MAIT cells are depleted early but retain functional cytokine expression in HIV infection , 2015, Immunology and cell biology.

[9]  P. Brennan,et al.  The transcriptional programs of iNKT cells. , 2015, Seminars in immunology.

[10]  G. Besra,et al.  The molecular bases of δ/αβ T cell–mediated antigen recognition , 2014, The Journal of experimental medicine.

[11]  D. Moody,et al.  Human T cells use CD1 and MR1 to recognize lipids and small molecules. , 2014, Current opinion in chemical biology.

[12]  A. V. van Kampen,et al.  Discovery of Invariant T Cells by Next-Generation Sequencing of the Human TCR α-Chain Repertoire , 2014, The Journal of Immunology.

[13]  H. Nell,et al.  Efficacy of ABX196, a new NKT agonist, in prophylactic human vaccination. , 2014, Vaccine.

[14]  E. Adams,et al.  Molecular basis of mycobacterial lipid antigen presentation by CD1c and its recognition by αβ T cells , 2014, Proceedings of the National Academy of Sciences.

[15]  James McCluskey,et al.  A molecular basis underpinning the T cell receptor heterogeneity of mucosal-associated invariant T cells , 2014, The Journal of experimental medicine.

[16]  J. Rossjohn,et al.  TCR Bias and Affinity Define Two Compartments of the CD1b–Glycolipid-Specific T Cell Repertoire , 2014, The Journal of Immunology.

[17]  J. McCluskey,et al.  A Molecular Basis for the Interplay between T Cells, Viral Mutants, and Human Leukocyte Antigen Micropolymorphism* , 2014, The Journal of Biological Chemistry.

[18]  James E. Crooks,et al.  The intracellular B30.2 domain of butyrophilin 3A1 binds phosphoantigens to mediate activation of human Vγ9Vδ2 T cells. , 2014, Immunity.

[19]  D. Sinderen,et al.  T-cell activation by transitory neo-antigens derived from distinct microbial pathways , 2014, Nature.

[20]  Y. Chien,et al.  γδ T cells: first line of defense and beyond. , 2014, Annual review of immunology.

[21]  E. Adams,et al.  Lipid presentation by human CD1 molecules and the diverse T cell populations that respond to them. , 2014, Current opinion in immunology.

[22]  J. Altman,et al.  CD1a autoreactive T cells recognize natural skin oils that function as headless antigens , 2013, Nature Immunology.

[23]  Damien Picard,et al.  Crystal structure of Vδ1 T cell receptor in complex with CD1d-sulfatide shows MHC-like recognition of a self-lipid by human γδ T cells. , 2013, Immunity.

[24]  Y. Okamoto,et al.  NKT Cells as an Ideal Anti-Tumor Immunotherapeutic , 2013, Front. Immunol..

[25]  I. Wilson,et al.  Cutting Edge: CD1a Tetramers and Dextramers Identify Human Lipopeptide–Specific T Cells Ex Vivo , 2013, The Journal of Immunology.

[26]  James McCluskey,et al.  Antigen-loaded MR1 tetramers define T cell receptor heterogeneity in mucosal-associated invariant T cells , 2013, The Journal of experimental medicine.

[27]  Jamie Rossjohn,et al.  CD1d-lipid antigen recognition by the γδ TCR , 2013, Nature Immunology.

[28]  N. K. Williams,et al.  Butyrophilin 3A1 binds phosphorylated antigens and stimulates human γδ T cells , 2013, Nature Immunology.

[29]  James McCluskey,et al.  Recognition of vitamin B metabolites by mucosal-associated invariant T cells , 2013, Nature Communications.

[30]  D. Doherty,et al.  Cutting Edge: CD1d Restriction and Th1/Th2/Th17 Cytokine Secretion by Human Vδ3 T Cells , 2013, The Journal of Immunology.

[31]  Jamie Rossjohn,et al.  A conserved human T cell population targets mycobacterial antigens presented by CD1b , 2013, Nature Immunology.

[32]  E. Adams,et al.  CD1c tetramers detect ex vivo T cell responses to processed phosphomycoketide antigens , 2013, The Journal of experimental medicine.

[33]  O. Lantz,et al.  MAIT cells, surveyors of a new class of antigen: development and functions. , 2013, Current opinion in immunology.

[34]  E. Adams,et al.  The adaptable major histocompatibility complex (MHC) fold: structure and function of nonclassical and MHC class I-like molecules. , 2013, Annual review of immunology.

[35]  J. Rossjohn,et al.  Recognition of CD1d-restricted antigens by natural killer T cells , 2012, Nature Reviews Immunology.

[36]  Malcolm J. McConville,et al.  MR1 presents microbial vitamin B metabolites to MAIT cells , 2012, Nature.

[37]  E. Adams,et al.  The majority of CD1d‐sulfatide‐specific T cells in human blood use a semiinvariant Vδ1 TCR , 2012, European journal of immunology.

[38]  Carrie R Willcox,et al.  Cytomegalovirus and tumor stress surveillance by binding of a human γδ T cell antigen receptor to endothelial protein C receptor , 2012, Nature Immunology.

[39]  P. Streeter,et al.  Human thymic MR1-restricted MAIT cells are innate pathogen-reactive effectors that adapt following thymic egress , 2012, Mucosal Immunology.

[40]  J. Altman,et al.  Discovery of deoxyceramides and diacylglycerols as CD1b scaffold lipids among diverse groove-blocking lipids of the human CD1 system , 2011, Proceedings of the National Academy of Sciences.

[41]  A. Heck,et al.  Structural reorganization of the antigen-binding groove of human CD1b for presentation of mycobacterial sulfoglycolipids , 2011, Proceedings of the National Academy of Sciences.

[42]  I. Wilson,et al.  The Journal of Experimental Medicine CORRESPONDENCE , 2005 .

[43]  T. D. de Gruijl,et al.  Clinical experience with α-galactosylceramide (KRN7000) in patients with advanced cancer and chronic hepatitis B/C infection. , 2011, Clinical immunology.

[44]  A. Tyznik,et al.  Cardiolipin Binds to CD1d and Stimulates CD1d-Restricted γδ T Cells in the Normal Murine Repertoire , 2011, The Journal of Immunology.

[45]  G. Besra,et al.  A molecular basis for the exquisite CD1d-restricted antigen specificity and functional responses of natural killer T cells. , 2011, Immunity.

[46]  P. Marrack,et al.  A molecular basis for NKT cell recognition of CD1d-self-antigen. , 2011, Immunity.

[47]  A. Steere,et al.  Borrelia burgdorferi infection regulates CD1 expression in human cells and tissues via IL1‐β , 2011, European journal of immunology.

[48]  A. Scelfo,et al.  High‐frequency and adaptive‐like dynamics of human CD1 self‐reactive T cells , 2011, European journal of immunology.

[49]  A. Saghatelian,et al.  The 2.5 Å structure of CD1c in complex with a mycobacterial lipid reveals an open groove ideally suited for diverse antigen presentation. , 2010, Immunity.

[50]  R. Clark,et al.  CD1a-autoreactive T cells are a normal component of the human αβ T cell repertoire , 2010, Nature Immunology.

[51]  O. Lantz,et al.  Antimicrobial activity of mucosal-associated invariant T cells , 2010, Nature Immunology.

[52]  Matthew S. Cook,et al.  Human Mucosal Associated Invariant T Cells Detect Bacterially Infected Cells , 2010, PLoS biology.

[53]  D. Zajonc,et al.  Lipid binding orientation within CD1d affects recognition of Borrelia burgorferi antigens by NKT cells , 2009, Proceedings of the National Academy of Sciences.

[54]  D. Moody,et al.  CD1-restricted adaptive immune responses to Mycobacteria in human group 1 CD1 transgenic mice , 2009, The Journal of experimental medicine.

[55]  I. van Rhijn,et al.  The evolved functions of CD1 during infection. , 2009, Current opinion in immunology.

[56]  D. Zajonc,et al.  Synthesis of Dideoxymycobactin Antigens Presented by CD1a Reveals T Cell Fine Specificity for Natural Lipopeptide Structures* , 2009, The Journal of Biological Chemistry.

[57]  P. Cresswell,et al.  Kinetics and Cellular Site of Glycolipid Loading Control the Outcome of Natural Killer T Cell Activation , 2009, Immunity.

[58]  L. F. Murga,et al.  pH-dependent interdomain tethers of CD1b regulate its antigen capture. , 2008, Immunity.

[59]  D. Zajonc,et al.  Two canine CD1a proteins are differentially expressed in skin , 2008, Immunogenetics.

[60]  Natalie A. Borg,et al.  CD1d–lipid-antigen recognition by the semi-invariant NKT T-cell receptor , 2007, Nature.

[61]  G. Besra,et al.  The length of lipids bound to human CD1d molecules modulates the affinity of NKT cell TCR and the threshold of NKT cell activation , 2007, The Journal of experimental medicine.

[62]  M. Baker,et al.  Evolution of mammalian CD1: marsupial CD1 is not orthologous to the eutherian isoforms and is a pseudogene in the opossum Monodelphis domestica , 2007, Immunology.

[63]  T. Awata,et al.  Analysis of the genomic structure of the porcine CD1 gene cluster. , 2007, Genomics.

[64]  Nicholas A Williamson,et al.  A T cell receptor flattens a bulged antigenic peptide presented by a major histocompatibility complex class I molecule , 2007, Nature Immunology.

[65]  A. Heck,et al.  Endogenous phosphatidylcholine and a long spacer ligand stabilize the lipid‐binding groove of CD1b , 2006, The EMBO journal.

[66]  G. Besra,et al.  Role of lipid trimming and CD1 groove size in cellular antigen presentation , 2006, The EMBO journal.

[67]  L. Mori,et al.  Functional CD1a is stabilized by exogenous lipids , 2006, European journal of immunology.

[68]  G. Besra,et al.  The Bovine CD1 Family Contains Group 1 CD1 Proteins, but No Functional CD1d1 , 2006, The Journal of Immunology.

[69]  J. Salamero,et al.  Assistance of Microbial Glycolipid Antigen Processing by CD1e , 2005, Science.

[70]  S. Peng,et al.  Mycobacterium tuberculosis Regulates CD1 Antigen Presentation Pathways through TLR-21 , 2005, The Journal of Immunology.

[71]  R. Mannucci,et al.  Human CD1-restricted T cell recognition of lipids from pollens , 2005, The Journal of experimental medicine.

[72]  J. Kaufman,et al.  Two CD1 genes map to the chicken MHC, indicating that CD1 genes are ancient and likely to have been present in the primordial MHC. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[73]  Michael B Brenner,et al.  Characterization of two avian MHC-like genes reveals an ancient origin of the CD1 family. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[74]  I. Wilson,et al.  T cell activation by lipopeptide antigens. , 2005, Science.

[75]  K. Wucherpfennig,et al.  Unconventional topology of self peptide–major histocompatibility complex binding by a human autoimmune T cell receptor , 2005, Nature Immunology.

[76]  B. Beutler,et al.  Exogenous and endogenous glycolipid antigens activate NKT cells during microbial infections , 2005, Nature.

[77]  R. Dwek,et al.  Molecular mechanism of lipopeptide presentation by CD1a. , 2005, Immunity.

[78]  M. Fernandez-Vina,et al.  Identification of a Human HLA-E-Restricted CD8+ T Cell Subset in Volunteers Immunized with Salmonella enterica Serovar Typhi Strain Ty21a Typhoid Vaccine1 , 2004, The Journal of Immunology.

[79]  G. Besra,et al.  CD1d-restricted T cell activation by nonlipidic small molecules. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[80]  Michael B Brenner,et al.  CD1: antigen presentation and T cell function. , 2004, Annual review of immunology.

[81]  G. Besra,et al.  Direct Measurement of Antigen Binding Properties of CD1 Proteins Using Fluorescent Lipid Probes* , 2004, Journal of Biological Chemistry.

[82]  I. Wilson,et al.  Crystal structure of CD1a in complex with a sulfatide self antigen at a resolution of 2.15 Å , 2003, Nature Immunology.

[83]  Olivier Lantz,et al.  Selection of evolutionarily conserved mucosal-associated invariant T cells by MR1 , 2003, Nature.

[84]  M. Brenner,et al.  CD1-mediated γ/δ T Cell Maturation of Dendritic Cells , 2002, The Journal of experimental medicine.

[85]  J. Belisle,et al.  HLA-E–dependent Presentation of Mtb-derived Antigen to Human CD8+ T Cells , 2002, The Journal of experimental medicine.

[86]  Gerd Ritter,et al.  Structure of human CD1b with bound ligands at 2.3 Å, a maze for alkyl chains , 2002, Nature Immunology.

[87]  S. Porcelli,et al.  Induction of CD1-Restricted Immune Responses in Guinea Pigs by Immunization with Mycobacterial Lipid Antigens1 , 2002, The Journal of Immunology.

[88]  G. De Libero,et al.  Presentation of the Same Glycolipid by Different CD1 Molecules , 2002, The Journal of experimental medicine.

[89]  G. Besra,et al.  Lipid length controls antigen entry into endosomal and nonendosomal pathways for CD1b presentation , 2002, Nature Immunology.

[90]  T. Yamamura,et al.  A synthetic glycolipid prevents autoimmune encephalomyelitis by inducing TH2 bias of natural killer T cells , 2001, Nature.

[91]  A. Kulkarni,et al.  Glycolipid antigen processing for presentation by CD1d molecules. , 2001, Science.

[92]  S. Hayes,et al.  Group 1 CD1 Genes in Rabbit1 , 2001, The Journal of Immunology.

[93]  E. V. van Donselaar,et al.  Separate pathways for antigen presentation by CD1 molecules. , 1999, Immunity.

[94]  E. Kawasaki,et al.  References Subscriptions Permissions Email Alerts Conservation of a CD1 Multigene Family in the Guinea Pig , 2013 .

[95]  M. Brenner,et al.  Human γδ T Cells Recognize Alkylamines Derived from Microbes, Edible Plants, and Tea , 1999 .

[96]  M. Brenner,et al.  Human gamma delta T cells recognize alkylamines derived from microbes, edible plants, and tea: implications for innate immunity. , 1999, Immunity.

[97]  M. Bonneville,et al.  An Invariant T Cell Receptor α Chain Defines a Novel TAP-independent Major Histocompatibility Complex Class Ib–restricted α/β T Cell Subpopulation in Mammals , 1999, The Journal of experimental medicine.

[98]  Ian A. Wilson,et al.  Molecular Recognition of Lipid Antigens by T Cell Receptors , 1999, The Journal of experimental medicine.

[99]  S. Porcelli,et al.  CD1d-restricted Recognition of Synthetic Glycolipid Antigens by Human Natural Killer T Cells , 1998, The Journal of experimental medicine.

[100]  R. Locksley,et al.  Mouse CD1-autoreactive T cells have diverse patterns of reactivity to CD1+ targets. , 1998, Journal of immunology.

[101]  P. Peters,et al.  The tyrosine-containing cytoplasmic tail of CD1b is essential for its efficient presentation of bacterial lipid antigens. , 1998, Immunity.

[102]  R. Zinkernagel,et al.  The Nobel Lectures in Immunology The Nobel Prize for Physiology or Medicine, 1996 awarded to , 1997 .

[103]  B. Reinhold,et al.  Structural requirements for glycolipid antigen recognition by CD1b-restricted T cells. , 1997, Science.

[104]  R. Zinkernagel Cellular Immune Recognition and the Biological Role of Major Transplantation Antigens , 1997, Bioscience reports.

[105]  P. A. Peterson,et al.  Crystal structure of mouse CD1: An MHC-like fold with a large hydrophobic binding groove. , 1997, Science.

[106]  R. Zinkernagel Cellular Immune Recognition and the Biological Role of Major Transplantation Antigens , 1997, Scandinavian journal of immunology.

[107]  D. Wiley,et al.  Assembly, specific binding, and crystallization of a human TCR-alphabeta with an antigenic Tax peptide from human T lymphotropic virus type 1 and the class I MHC molecule HLA-A2. , 1996, Journal of immunology.

[108]  Partho Ghosh,et al.  Structure of the complex between human T-cell receptor, viral peptide and HLA-A2 , 1996, Nature.

[109]  Robyn L. Stanfield,et al.  An αβ T Cell Receptor Structure at 2.5 Å and Its Orientation in the TCR-MHC Complex , 1996, Science.

[110]  Philip J. R. Goulder,et al.  Phenotypic Analysis of Antigen-Specific T Lymphocytes , 1996, Science.

[111]  M. Bonneville,et al.  Repertoire analysis of human peripheral blood lymphocytes using a human V delta 3 region-specific monoclonal antibody. Characterization of dual T cell receptor (TCR) delta-chain expressors and alpha beta T cells expressing V delta 3J alpha C alpha-encoded TCR chains. , 1995, Journal of immunology.

[112]  J. Yewdell,et al.  CD1 recognition by mouse NK1+ T lymphocytes. , 1995, Science.

[113]  B. Bloom,et al.  Natural and synthetic non-peptide antigens recognized by human γδ T cells , 1995, Nature.

[114]  S. Porcelli,et al.  Recognition of a lipid antigen by GDI-restricted αβ+ T cells , 1994, Nature.

[115]  Y. Tanaka,et al.  Nonpeptide ligands for human gamma delta T cells. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[116]  F. Sallusto,et al.  In vivo persistence of expanded clones specific for bacterial antigens within the human T cell receptor alpha/beta CD4-8- subset , 1993, The Journal of experimental medicine.

[117]  N. K. Jerne,et al.  The Nobel Lectures in Immunology , 1993, Scandinavian journal of immunology.

[118]  S. Porcelli,et al.  CDlb restricts the response of human CD4−8−T lymphocytes to a microbial antigen , 1992, Nature.

[119]  S. Roman-Roman,et al.  Molecular characterization of human T cell receptor α chains including a Vδ1‐encoded variable segment , 1991 .

[120]  S. Roman-Roman,et al.  Further analysis of the T cell receptor gamma/delta+ peripheral lymphocyte subset. The V delta 1 gene segment is expressed with either C alpha or C delta , 1990, The Journal of experimental medicine.

[121]  S. Balk,et al.  Recognition of cluster of differentiation 1 antigens by human CD4−CD8>− cytolytic T lymphocyte , 1989, Nature.

[122]  C. Milstein,et al.  Two classes of CD1 genes , 1989, European journal of immunology.

[123]  J. Coligan,et al.  A novel population of T-cell receptor αβ-bearing thymocytes which predominantly expresses a single Vβ gene family , 1987, Nature.

[124]  H. Macdonald,et al.  Developmentally regulated expression of T cell receptor beta chain variable domains in immature thymocytes , 1987, The Journal of experimental medicine.

[125]  C. Milstein,et al.  A novel family of human major histocompatibility complex-related genes not mapping to chromosome 6 , 1986, Nature.

[126]  C. Milstein,et al.  A human thymocyte antigen defined by a hybrid myeloma monoclonal antibody , 1979, European journal of immunology.

[127]  M. Hines,et al.  The equine CD1 gene family is the largest and most diverse yet identified , 2013, Immunogenetics.

[128]  J. Lenstra,et al.  Functional CD1d and/or NKT cell invariant chain transcript in horse, pig, African elephant and guinea pig, but not in ruminants , 2009, Molecular immunology.

[129]  M. Brenner,et al.  Antigen Presentation by CD1 Lipids, T Cells, and NKT Cells in Microbial Immunity. , 2009, Advances in immunology.

[130]  I. Yoshino,et al.  A Phase I-II Study of -Galactosylceramide-Pulsed IL-2/GM-CSF-Cultured Peripheral Blood Mononuclear Cells in Patients with Advanced and Recurrent Non-Small Cell Lung Cancer , 2009 .

[131]  M. Brenner,et al.  Chapter 1 Antigen Presentation by CD1 , 2009 .

[132]  A. Kaser,et al.  CD1 expression on antigen-presenting cells. , 2007, Current topics in microbiology and immunology.

[133]  F. Sallusto,et al.  In Vivo Persistence of Expanded Clones Specific for Bacterial Antigens within the Human T Cell Receptor ce//~ CD4-8- Subset By Paolo Dellabona,* Giulia Casorati,* Brigitte Friedli, , 1993 .

[134]  河野 鉄 CD1d-restricted and TCR-mediated activation of V α14 NKT cells by glycosylceramides , 2000 .

[135]  M. Lefranc,et al.  Genetic organization of the human T-cell receptor gamma and delta loci. , 1990, Research in immunology.

[136]  S. Roman-Roman,et al.  FURTHER ANALYSIS OF THE T CELL RECEPTOR -y/b+ PERIPHERAL LYMPHOCYTE SUBSET The VSl Gene Segment Is Expressed with either Ca or CS , 1990 .