Flat-top TIRF illumination boosts DNA-PAINT imaging and quantification

[1]  P. Schwille,et al.  Photo-Induced Depletion of Binding Sites in DNA-PAINT Microscopy , 2018, Molecules.

[2]  Susan Cox,et al.  Artefact-free high density localization microscopy analysis , 2018 .

[3]  J. Bewersdorf,et al.  Biological Insight from Super-Resolution Microscopy: What We Can Learn from Localization-Based Images. , 2018, Annual review of biochemistry.

[4]  S. Kornfeld A Lifetime of Adventures in Glycobiology. , 2018, Annual review of biochemistry.

[5]  K. Y. Han,et al.  Flat-field illumination for quantitative fluorescence imaging , 2018, bioRxiv.

[6]  Maximilian T. Strauss,et al.  Quantifying absolute addressability in DNA origami with molecular resolution , 2018, Nature Communications.

[7]  Maximilian T. Strauss,et al.  Quantifying Reversible Surface Binding via Surface-Integrated Fluorescence Correlation Spectroscopy , 2018, Nano letters.

[8]  C. Kaminski,et al.  Flat-Field Super-Resolution Localization Microscopy with a Low-Cost Refractive Beam-Shaping Element , 2018, Scientific Reports.

[9]  Maximilian T. Strauss,et al.  Multiplexed 3D super-resolution imaging of whole cells using spinning disk confocal microscopy and DNA-PAINT , 2017, Nature Communications.

[10]  Joseph R. Pyle,et al.  Photobleaching of YOYO-1 in super-resolution single DNA fluorescence imaging , 2017, Beilstein journal of nanotechnology.

[11]  Maximilian T. Strauss,et al.  Super-resolution microscopy with DNA-PAINT , 2017, Nature Protocols.

[12]  M. Heilemann,et al.  Single-Molecule Localization Microscopy in Eukaryotes. , 2017, Chemical reviews.

[13]  Peng Yin,et al.  DNA-barcoded labeling probes for highly multiplexed Exchange-PAINT imaging† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6sc05420j Click here for additional data file. , 2017, Chemical science.

[14]  Andreas Rowald,et al.  Efficient homogeneous illumination and optical sectioning for quantitative single-molecule localization microscopy. , 2016, Optics express.

[15]  Kyle M. Douglass,et al.  Super-resolution imaging of multiple cells by optimised flat-field epi-illumination , 2016, Nature Photonics.

[16]  Johannes B. Woehrstein,et al.  Quantitative Super-Resolution Imaging with qPAINT using Transient Binding Analysis , 2016, Nature Methods.

[17]  Henry Pinkard,et al.  Advanced methods of microscope control using μManager software. , 2014, Journal of biological methods.

[18]  T. G. Martin,et al.  Facile and Scalable Preparation of Pure and Dense DNA Origami Solutions , 2014, Angewandte Chemie.

[19]  S. Hess,et al.  Precisely and accurately localizing single emitters in fluorescence microscopy , 2014, Nature Methods.

[20]  U. Endesfelder,et al.  A simple method to estimate the average localization precision of a single-molecule localization microscopy experiment , 2014, Histochemistry and Cell Biology.

[21]  Johannes B. Woehrstein,et al.  Multiplexed 3D Cellular Super-Resolution Imaging with DNA-PAINT and Exchange-PAINT , 2014, Nature Methods.

[22]  Lei Zhu,et al.  Faster STORM using compressed sensing , 2012, Nature Methods.

[23]  Dylan T Burnette,et al.  Bleaching/blinking assisted localization microscopy for superresolution imaging using standard fluorescent molecules , 2011, Proceedings of the National Academy of Sciences.

[24]  Mark Bates,et al.  Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging , 2011, Nature Methods.

[25]  James S. Duncan,et al.  3-D Reconstruction of Microtubules From Multi-Angle Total Internal Reflection Fluorescence Microscopy Using Bayesian Framework , 2011, IEEE Transactions on Image Processing.

[26]  Keith A. Lidke,et al.  Simultaneous multiple-emitter fitting for single molecule super-resolution imaging , 2011, Biomedical optics express.

[27]  S. Holden,et al.  DAOSTORM: an algorithm for high- density super-resolution microscopy , 2011, Nature Methods.

[28]  M. Tokunaga,et al.  Highly inclined thin illumination enables clear single-molecule imaging in cells , 2008, Nature Methods.

[29]  R. Hochstrasser,et al.  Wide-field subdiffraction imaging by accumulated binding of diffusing probes , 2006, Proceedings of the National Academy of Sciences.

[30]  Michael J Rust,et al.  Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) , 2006, Nature Methods.

[31]  J. Lippincott-Schwartz,et al.  Imaging Intracellular Fluorescent Proteins at Nanometer Resolution , 2006, Science.

[32]  W. Webb,et al.  Precise nanometer localization analysis for individual fluorescent probes. , 2002, Biophysical journal.

[33]  C. M. Jefferson,et al.  Design and performance of a refractive optical system that converts a Gaussian to a flattop beam. , 2000, Applied optics.

[34]  D. Axelrod Cell-substrate contacts illuminated by total internal reflection fluorescence , 1981, The Journal of cell biology.

[35]  B. Frieden Lossless conversion of a plane laser wave to a plane wave of uniform irradiance. , 1965 .

[36]  D. Axelrod Chapter 7: Total internal reflection fluorescence microscopy. , 2008, Methods in cell biology.