Bubble column bioreactor design and evaluation for bioethanol production using simultaneous saccharification and fermentation strategy from hydrothermally pretreated lignocellulosic biomass

[1]  Héctor A. Ruiz,et al.  Oscillatory flow bioreactor operating at high solids loading for enzymatic hydrolysis of lignocellulosic biomass , 2022, Biochemical Engineering Journal.

[2]  Rajeev K Sukumaran,et al.  High-solids loading processing for an integrated lignocellulosic biorefinery: Effects of transport phenomena and rheology - A review. , 2022, Bioresource technology.

[3]  J. Maroušek,et al.  Revisiting competitiveness of hydrogen and algae biodiesel , 2022, Fuel.

[4]  J. Maroušek Review: Nanoparticles can change (bio)hydrogen competitiveness , 2022, Fuel.

[5]  Rongrong Xie,et al.  Valorisation of wheat straw and bioethanol production by a novel xylanase- and cellulase-producing Streptomyces strain isolated from the wood-feeding termite, Microcerotermes species , 2022, Fuel.

[6]  T. Forster‐Carneiro,et al.  Cost analysis of subcritical water pretreatment of sugarcane straw and bagasse for second‐generation bioethanol production: a case study in a sugarcane mill , 2021, Biofuels, Bioproducts and Biorefining.

[7]  Héctor A. Ruiz,et al.  Severity factor kinetic model as a strategic parameter of hydrothermal processing (steam explosion and liquid hot water) for biomass fractionation under biorefinery concept. , 2021, Bioresource technology.

[8]  A. Reungsang,et al.  Repeated-batch simultaneous saccharification and fermentation of cassava pulp for ethanol production using amylases and Saccharomyces cerevisiae immobilized on bacterial cellulose , 2021, Biochemical Engineering Journal.

[9]  G. L. Castiglioni,et al.  Industrial yeast strains competence in mixed culture with wild flocculent yeast , 2021, Biocatalysis and Agricultural Biotechnology.

[10]  Héctor A. Ruiz,et al.  Hot Compressed Water Pretreatment and Surfactant Effect on Enzymatic Hydrolysis Using Agave Bagasse , 2021, Energies.

[11]  Phisit Seesuriyachan,et al.  Bioethanol Production from Cellulose-Rich Corncob Residue by the Thermotolerant Saccharomyces cerevisiae TC-5 , 2021, Journal of fungi.

[12]  Cristóbal N. Aguilar,et al.  High-pressure technology for Sargassum spp biomass pretreatment and fractionation in the third generation of bioethanol production. , 2021, Bioresource technology.

[13]  C. Mary,et al.  A Mini Review: The History of Yeast Flocculation with an Emphasis on Measurement Techniques , 2020, Journal of the American Society of Brewing Chemists.

[14]  Eulogio Castro,et al.  Engineering aspects of hydrothermal pretreatment: From batch to continuous operation, scale-up and pilot reactor under biorefinery concept. , 2019, Bioresource technology.

[15]  G. Baskar,et al.  Bioethanol production from woody stem Prosopis juliflora using thermo tolerant yeast Kluyveromyces marxianus and its kinetics studies. , 2019, Bioresource technology.

[16]  O. Charles,et al.  Alginate microporous beads promote higher ethanol productivity than the normal beads in a repeated-batch ethanolic process involving Saccharomyces cerevisiae LC 269108 , 2019, African Journal of Biotechnology.

[17]  Héctor A. Ruiz,et al.  Enhancement and modeling of enzymatic hydrolysis on cellulose from agave bagasse hydrothermally pretreated in a horizontal bioreactor. , 2019, Carbohydrate polymers.

[18]  Hafiz M.N. Iqbal,et al.  Current status and future trends of bioethanol production from agro-industrial wastes in Mexico , 2019, Renewable and Sustainable Energy Reviews.

[19]  G. R. Macêdo,et al.  Valorization of an agroextractive residue—Carnauba straw—for the production of bioethanol by simultaneous saccharification and fermentation (SSF) , 2018 .

[20]  Héctor A. Ruiz,et al.  Bioreactor design for enzymatic hydrolysis of biomass under the biorefinery concept , 2018, Chemical Engineering Journal.

[21]  Héctor A. Ruiz,et al.  Scale-up and evaluation of hydrothermal pretreatment in isothermal and non-isothermal regimen for bioethanol production using agave bagasse. , 2018, Bioresource technology.

[22]  R. Zhao,et al.  Review of the pretreatment and bioconversion of lignocellulosic biomass from wheat straw materials , 2018, Renewable and Sustainable Energy Reviews.

[23]  Charles M. Cai,et al.  Overcoming factors limiting high-solids fermentation of lignocellulosic biomass to ethanol , 2017, Proceedings of the National Academy of Sciences.

[24]  C. J. Franzén,et al.  Sustaining fermentation in high-gravity ethanol production by feeding yeast to a temperature-profiled multifeed simultaneous saccharification and co-fermentation of wheat straw , 2017, Biotechnology for Biofuels.

[25]  P. Thanonkeo,et al.  High-temperature ethanol production using thermotolerant yeast newly isolated from Greater Mekong Subregion , 2017, Brazilian journal of microbiology : [publication of the Brazilian Society for Microbiology].

[26]  Siti Azmah Jambo,et al.  Yeasts in sustainable bioethanol production: A review , 2017, Biochemistry and biophysics reports.

[27]  L. Laopaiboon,et al.  High ethanol production under optimal aeration conditions and yeast composition in a very high gravity fermentation from sweet sorghum juice by Saccharomyces cerevisiae , 2016 .

[28]  C. Boonchird,et al.  Cellular mechanisms contributing to multiple stress tolerance in Saccharomyces cerevisiae strains with potential use in high-temperature ethanol fermentation , 2016, AMB Express.

[29]  L. Nain,et al.  Thermotolerant fermenting yeasts for simultaneous saccharification fermentation of lignocellulosic biomass , 2016 .

[30]  Y. Matsumura,et al.  Simultaneous Saccharification and Fermentation Using Environmental-adapted Yeast by Preculture , 2016 .

[31]  Héctor A. Ruiz,et al.  Industrial robust yeast isolates with great potential for fermentation of lignocellulosic biomass. , 2014, Bioresource technology.

[32]  Josef Maroušek,et al.  Biotechnological Partition of the Grass Silage to Streamline its Complex Energy Utilization , 2014 .

[33]  L. G. Fietto,et al.  Physiological characterization of thermotolerant yeast for cellulosic ethanol production , 2014, Applied Microbiology and Biotechnology.

[34]  J. Maroušek Study on Commercial Scale Steam Explosion of Winter Brassica Napus STRAW , 2013 .

[35]  Héctor A. Ruiz,et al.  Hydrothermal processing, as an alternative for upgrading agriculture residues and marine biomass according to the biorefinery concept: A review , 2013 .

[36]  R. Schwan,et al.  The effects of co-culturing non-Saccharomyces yeasts with S. cerevisiae on the sugar cane spirit (cachaça) fermentation process , 2012, Antonie van Leeuwenhoek.

[37]  Cristóbal N. Aguilar,et al.  Pectinase production from lemon peel pomace as support and carbon source in solid-state fermentation column-tray bioreactor , 2012 .

[38]  Héctor A. Ruiz,et al.  Bioethanol production from hydrothermal pretreated wheat straw by a flocculating Saccharomyces cerevisiae strain – Effect of process conditions , 2012 .

[39]  Héctor A. Ruiz,et al.  Kinetic modeling of enzymatic saccharification using wheat straw pretreated under autohydrolysis and organosolv process , 2012 .

[40]  Masami Ueno,et al.  Methods for Improving Methane Yield from Rye Straw , 2012 .

[41]  Héctor A. Ruiz,et al.  Development and Characterization of an Environmentally Friendly Process Sequence (Autohydrolysis and Organosolv) for Wheat Straw Delignification , 2011, Applied biochemistry and biotechnology.

[42]  E. V. Soares Flocculation in Saccharomyces cerevisiae: a review , 2011, Journal of applied microbiology.

[43]  José A. Teixeira,et al.  Adaptation of dinitrosalicylic acid method to microtiter plates , 2010 .

[44]  Irini Angelidaki,et al.  Production of bioethanol from wheat straw: An overview on pretreatment, hydrolysis and fermentation. , 2010, Bioresource technology.

[45]  H. Hoshida,et al.  High-temperature fermentation: how can processes for ethanol production at high temperatures become superior to the traditional process using mesophilic yeast? , 2009, Applied Microbiology and Biotechnology.

[46]  M. L. Lopes,et al.  Yeast selection for fuel ethanol production in Brazil. , 2008, FEMS yeast research.

[47]  M. Neves,et al.  Saccharomyces cerevisiae strains from traditional fermentations of Brazilian cachaça: trehalose metabolism, heat and ethanol resistance , 2007, Antonie van Leeuwenhoek.

[48]  J. Pringle,et al.  Effect of growth temperature upon heat sensitivity in Saccharomyces cerevisiae , 1980, Archives of Microbiology.

[49]  António A. Vicente,et al.  Applications of yeast flocculation in biotechnological processes , 2000 .

[50]  M. Moo-Young,et al.  AIRLIFT REACTORS: CHARACTERISTICS, APPLICATIONS AND DESIGN CONSIDERATIONS , 1987 .

[51]  D. R. Mills DIFFERENTIAL STAINING OF LIVING AND DEAD YEAST CELLS , 1941 .

[52]  R. Gonzalez,et al.  Exploring the suitability of Saccharomyces cerevisiae strains for winemaking under aerobic conditions. , 2022, Food microbiology.