Vicinity Occlusion Maps: Enhanced Depth Perception of Volumetric Models

Volume models often show high depth complexity. This poses di±culties to the observer in judging the spatial relationships accurately. Illustrators usually use certain techniques such as halos or edge darkening in order to enhance depth perception of certain structures. Halos may be dark or light, and even colored. Halo construction on a volumetric basis impacts rendering performance due to the complexity of the construction process. In this paper we present Vicinity Occlusion Maps: a simple and fast method to compute the light occlusion due to neighboring voxels. Vicinity Occlusion Maps may be used to generate flexible halos around objects or selected structures in order to enhance depth perception or accentuate the presence of some structures in volumetric models at a low cost. The user may freely select the structure that requires the halos to be generated, its color and size, and our proposed application generates those in real time. They may also be used to perform vicinity shading in realtime, or even to combine both effects.

[1]  Nicolas Holzschuch,et al.  Fast Precomputed Ambient Occlusion for Proximity Shadows , 2007, J. Graph. Tools.

[2]  Bernhard Preim,et al.  Real-Time Illustration of Vascular Structures , 2006, IEEE Transactions on Visualization and Computer Graphics.

[3]  David S. Ebert,et al.  Volume Illustration: Nonphotorealistic Rendering of Volume Models , 2001, IEEE Trans. Vis. Comput. Graph..

[4]  David H. Laidlaw,et al.  Interactive volume rendering of thin thread structures within multivalued scientific data sets , 2004, IEEE Transactions on Visualization and Computer Graphics.

[5]  Samuli Laine,et al.  Ambient occlusion fields , 2005, I3D '05.

[6]  Qiang Zhang,et al.  Realistic volume imaging , 1991, Proceeding Visualization '91.

[7]  U. Behrens,et al.  Adding shadows to a texture-based volume renderer , 1998, IEEE Symposium on Volume Visualization (Cat. No.989EX300).

[8]  Joe Michael Kniss,et al.  Multidimensional Transfer Functions for Interactive Volume Rendering , 2002, IEEE Trans. Vis. Comput. Graph..

[9]  David S. Ebert,et al.  Interactive volume illustration and feature halos , 2003, 11th Pacific Conference onComputer Graphics and Applications, 2003. Proceedings..

[10]  Kun Zhou,et al.  Precomputed shadow fields for dynamic scenes , 2005, SIGGRAPH 2005.

[11]  Jens Schneider,et al.  Interactive Volume Illustration , 2002, VMV.

[12]  Rüdiger Westermann,et al.  Acceleration techniques for GPU-based volume rendering , 2003, IEEE Visualization, 2003. VIS 2003..

[13]  Paolo Cignoni,et al.  Ambient Occlusion and Edge Cueing for Enhancing Real Time Molecular Visualization , 2006, IEEE Transactions on Visualization and Computer Graphics.

[14]  Xiaoru Yuan,et al.  Illustrating surfaces in volume , 2004, VISSYM'04.

[15]  Eduard Gröller,et al.  Fast Visualization of Object Contours by Non‐Photorealistic Volume Rendering , 2001, Comput. Graph. Forum.

[16]  A. James Stewart,et al.  Vicinity shading for enhanced perception of volumetric data , 2003, IEEE Visualization, 2003. VIS 2003..

[17]  Anselmo Lastra,et al.  Fast Summed‐Area Table Generation and its Applications , 2005, Comput. Graph. Forum.

[18]  Franklin C. Crow,et al.  Summed-area tables for texture mapping , 1984, SIGGRAPH.

[19]  Eduard Gröller,et al.  Two-Level Volume Rendering , 2001, IEEE Trans. Vis. Comput. Graph..

[20]  Hayden Landis,et al.  Production-Ready Global Illumination , 2004 .

[21]  Stefan Bruckner,et al.  Enhancing Depth-Perception with Flexible Volumetric Halos , 2007, IEEE Transactions on Visualization and Computer Graphics.

[22]  Sergey Zhukov,et al.  An Ambient Light Illumination Model , 1998, Rendering Techniques.