An experimental study of four variants of pose clustering from dense range data

Abstract Parameter clustering is a robust estimation technique based on location statistics in a parameter space where parameter samples are computed from data samples. This article investigates parameter clustering as a global estimator of object pose or rigid motion from dense range data without knowing correspondences between data points. Four variants of the algorithm are quantitatively compared regarding estimation accuracy and robustness: sampling poses from data points or from points with surface normals derived from them, each combined with clustering poses in the canonical or consistent parameter space, as defined in Hillenbrand (2007) [1] . An extensive test data set is employed: synthetic data generated from a public database of three-dimensional object models through various levels of corruption of their geometric representation; real range data from a public database of models and cluttered scenes. It turns out that sampling raw data points and clustering in the consistent parameter space yields the estimator most robust to data corruption. For data of sufficient quality, however, sampling points with normals is more efficient; this is most evident when detecting objects in cluttered scenes. Moreover, the consistent parameter space is always preferable to the canonical parameter space for clustering.

[1]  Peter Meer,et al.  ROBUST TECHNIQUES FOR COMPUTER VISION , 2004 .

[2]  Jing Li,et al.  A comprehensive review of current local features for computer vision , 2008, Neurocomputing.

[3]  B. Ripley,et al.  Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.

[4]  Eric Wahl,et al.  Surflet-pair-relation histograms: a statistical 3D-shape representation for rapid classification , 2003, Fourth International Conference on 3-D Digital Imaging and Modeling, 2003. 3DIM 2003. Proceedings..

[5]  David Suter,et al.  Robust adaptive-scale parametric model estimation for computer vision , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Thomas A. Funkhouser,et al.  The Princeton Shape Benchmark (Figures 1 and 2) , 2004, Shape Modeling International Conference.

[7]  Ulrich Hillenbrand Pose Clustering From Stereo Data , 2008, VISAPP.

[8]  George C. Stockman,et al.  Object recognition and localization via pose clustering , 1987, Comput. Vis. Graph. Image Process..

[9]  Mohammed Bennamoun,et al.  Three-Dimensional Model-Based Object Recognition and Segmentation in Cluttered Scenes , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  James V. Miller,et al.  MUSE: robust surface fitting using unbiased scale estimates , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[11]  Malcolm D. Shuster Survey of attitude representations , 1993 .

[12]  Sing Bing Kang,et al.  Emerging Topics in Computer Vision , 2004 .

[13]  Gerd Hirzinger,et al.  Tackling multi-sensory 3D data acquisition and fusion , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[14]  Berthold K. P. Horn,et al.  Closed-form solution of absolute orientation using unit quaternions , 1987 .

[15]  M. Shuster A survey of attitude representation , 1993 .

[16]  Edwin R. Hancock,et al.  A mixture model for pose clustering , 1999, Pattern Recognit. Lett..

[17]  Andrew E. Johnson,et al.  Using Spin Images for Efficient Object Recognition in Cluttered 3D Scenes , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Gerd Hirzinger,et al.  The 3D-Modeller: A Multi-Purpose Vision Platform , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[19]  Robert B. Fisher,et al.  Estimating 3-D rigid body transformations: a comparison of four major algorithms , 1997, Machine Vision and Applications.

[20]  Jitendra Malik,et al.  Shape matching and object recognition using shape contexts , 2010, 2010 3rd International Conference on Computer Science and Information Technology.

[21]  David Suter,et al.  MDPE: A Very Robust Estimator for Model Fitting and Range Image Segmentation , 2004, International Journal of Computer Vision.

[22]  Charles V. Stewart,et al.  MINPRAN: A New Robust Estimator for Computer Vision , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  Gerd Hirzinger,et al.  Probabilistic Search for Object Segmentation and Recognition , 2002, ECCV.

[24]  Adam Krzyzak,et al.  Robust Estimation for Range Image Segmentation and Reconstruction , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  Mohammed Bennamoun,et al.  On the Repeatability and Quality of Keypoints for Local Feature-based 3D Object Retrieval from Cluttered Scenes , 2009, International Journal of Computer Vision.

[26]  Larry D. Hostetler,et al.  The estimation of the gradient of a density function, with applications in pattern recognition , 1975, IEEE Trans. Inf. Theory.

[27]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[28]  Peter Meer,et al.  Simultaneous multiple 3D motion estimation via mode finding on Lie groups , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[29]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[30]  Thomas A. Funkhouser,et al.  The Princeton Shape Benchmark , 2004, Proceedings Shape Modeling Applications, 2004..

[31]  Gerd Hirzinger,et al.  Extrinsic and depth calibration of ToF-cameras , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[32]  George C. Stockman,et al.  Matching Images to Models for Registration and Object Detection via Clustering , 1982, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[33]  David Suter,et al.  Using symmetry in robust model fitting , 2003, Pattern Recognit. Lett..

[34]  Haifeng Chen,et al.  Robust Computer Vision through Kernel Density Estimation , 2002, ECCV.

[35]  Shang-Hong Lai,et al.  A consensus sampling technique for fast and robust model fitting , 2009, Pattern Recognit..

[36]  Rae-Hong Park,et al.  Robust Adaptive Segmentation of Range Images , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[37]  Charles V. Stewart,et al.  Robust Parameter Estimation in Computer Vision , 1999, SIAM Rev..

[38]  Peter Meer,et al.  Nonlinear Mean Shift over Riemannian Manifolds , 2009, International Journal of Computer Vision.

[39]  Ulrich Hillenbrand Consistent parameter clustering: Definition and analysis , 2007, Pattern Recognit. Lett..

[40]  P. Rousseeuw Least Median of Squares Regression , 1984 .

[41]  Dana H. Ballard,et al.  Generalizing the Hough transform to detect arbitrary shapes , 1981, Pattern Recognit..