Experimental constraints on the volatility of germanium, zinc, and lithium in Martian basalts and the role of degassing in alteration of surface minerals

[1]  D. Canil,et al.  The effects of S, Cl and oxygen fugacity on the sublimation of volatile trace metals degassed from silicate melts with implications for volcanic emissions , 2021 .

[2]  S. Klemme,et al.  Experimental constraints on metal transport in fumarolic gases , 2020 .

[3]  A. Marcelli,et al.  Jarosite formation in deep Antarctic ice provides a window into acidic, water-limited weathering on Mars , 2020, Nature Communications.

[4]  R. Gellert,et al.  Mars Science Laboratory Alpha Particle X-ray spectrometer trace elements: Situational sensitivity to Co, Ni, Cu, Zn, Ga, Ge, and Br , 2019 .

[5]  Usa,et al.  The composition of Mars , 2019, Geochimica et Cosmochimica Acta.

[6]  Alexander A. Iveson,et al.  Fluid-melt trace-element partitioning behaviour between evolved melts and aqueous fluids: Experimental constraints on the magmatic-hydrothermal transport of metals , 2019, Chemical Geology.

[7]  O. Forni,et al.  Copper enrichments in the Kimberley formation in Gale crater, Mars: Evidence for a Cu deposit at the source , 2019, Icarus.

[8]  R. Henley,et al.  Gas–Solid Reactions in Arc Volcanoes: Ancient and Modern , 2018, Reviews in Mineralogy and Geochemistry.

[9]  P. King,et al.  SO2 Gas Reactions with Silicate Glasses , 2018, Reviews in Mineralogy and Geochemistry.

[10]  J. Cairney,et al.  Analytical Techniques for Probing Small-Scale Layers that Preserve Information on Gas–Solid Interactions , 2018, Reviews in Mineralogy and Geochemistry.

[11]  Vincent M. Wheeler,et al.  Gas–Solid Reactions: Theory, Experiments and Case Studies Relevant to Earth and Planetary Processes , 2018, Reviews in Mineralogy and Geochemistry.

[12]  S. McLennan,et al.  Photochemical controls on chlorine and bromine geochemistry at the Martian surface , 2018, Earth and Planetary Science Letters.

[13]  K. Lewis,et al.  The Medusae Fossae Formation as the single largest source of dust on Mars , 2018, Nature Communications.

[14]  K. Nishiizumi,et al.  The Northwest Africa 8159 martian meteorite: Expanding the martian sample suite to the early Amazonian , 2017 .

[15]  Y. Laosiritaworn,et al.  Electronic properties of two-dimensional zinc oxide in hexagonal, (4,4)-tetragonal, and (4,8)-tetragonal structures by using Hybrid Functional calculation , 2017 .

[16]  Linda C. Kah,et al.  Mineralogy of an ancient lacustrine mudstone succession from the Murray formation, Gale crater, Mars , 2017 .

[17]  H. Leroux,et al.  Regolith breccia Northwest Africa 7533: Mineralogy and petrology with implications for early Mars , 2017 .

[18]  John H. Jones,et al.  A review of volatiles in the Martian interior , 2016 .

[19]  F. McCubbin,et al.  Degassing pathways of Cl-, F-, H-, and S-bearing magmas near the lunar surface: Implications for the composition and Cl isotopic values of lunar apatite , 2015 .

[20]  K. Righter,et al.  Siderophile and chalcophile element abundances in shergottites: Implications for Martian core formation , 2015 .

[21]  P. King,et al.  Porphyry copper deposit formation by sub-volcanic sulphur dioxide flux and chemisorption , 2015 .

[22]  K. Righter,et al.  Redox-driven exsolution of iron-titanium oxides in magnetite in Miller Range (MIL) 03346 nakhlite: Evidence for post crystallization oxidation in the nakhlite cumulate pile? , 2014 .

[23]  Megan L. Smith,et al.  The formation of sulfate, nitrate and perchlorate salts in the martian atmosphere , 2014 .

[24]  M. Humayun,et al.  Origin and age of the earliest Martian crust from meteorite NWA 7533 , 2013, Nature.

[25]  J. Grant,et al.  Gypsum, opal, and fluvial channels within a trough of Noctis Labyrinthus, Mars: Implications for aqueous activity during the Late Hesperian to Amazonian , 2013 .

[26]  R. V. Morris,et al.  X-ray Diffraction Results from Mars Science Laboratory: Mineralogy of Rocknest at Gale Crater , 2013, Science.

[27]  Andrew Steele,et al.  Evidence for perchlorates and the origin of chlorinated hydrocarbons detected by SAM at the Rocknest aeolian deposit in Gale Crater , 2013 .

[28]  M. Wälle,et al.  Solubility and partitioning behavior of Au, Cu, Ag and reduced S in magmas , 2013 .

[29]  Audrey M. Martin,et al.  Redox systematics of martian magmas with implications for magnetite stability , 2013 .

[30]  John F. Mustard,et al.  Most Mars minerals in a nutshell: Various alteration phases formed in a single environment in Noctis Labyrinthus , 2012 .

[31]  V. Chevrier,et al.  ROLE OF SULFIDE-WEATHERING IN THE FORMATION OF SULFATES OR CARBONATES ON MARS. , 2012 .

[32]  M. Humayun Chondrule cooling rates inferred from diffusive profiles in metal lumps from the Acfer 097 CR2 chondrite , 2012 .

[33]  D. Lindsley,et al.  Letter. Differential degassing of H2O, Cl, F, and S: Potential effects on lunar apatite , 2011 .

[34]  K. Herkenhoff,et al.  Characteristics, distribution, origin, and significance of opaline silica observed by the Spirit rov , 2011 .

[35]  D. Canil,et al.  The degassing behavior of Au, Tl, As, Pb, Re, Cd and Bi from silicate liquids: Experiments and applications , 2011 .

[36]  A. Simon,et al.  Gold solubility in oxidized and reduced, water-saturated mafic melt , 2011 .

[37]  B. Hynek,et al.  The volcanic history of Mars: High-resolution crater-based studies of the calderas of 20 volcanoes , 2011 .

[38]  Jean-Pierre Bibring,et al.  Martian polar and circum-polar sulfate-bearing deposits: Sublimation tills derived from the North Polar Cap , 2010 .

[39]  V. Hamilton,et al.  Geologic context of proposed chloride‐bearing materials on Mars , 2010 .

[40]  C. Herd,et al.  Crystallization, melt inclusion, and redox history of a Martian meteorite: Olivine-phyric shergottite Larkman Nunatak 06319 , 2010 .

[41]  M. Hirschmann,et al.  Major element analysis of natural silicates by laser ablation ICP-MS , 2010 .

[42]  R. Greeley,et al.  Minimum estimates of the amount and timing of gases released into the martian atmosphere from volcanic eruptions , 2009 .

[43]  K. Righter,et al.  Experimental evidence for sulfur-rich martian magmas: Implications for volcanism and surficial sulfur sources , 2009 .

[44]  D. Ming,et al.  Detection of Perchlorate and the Soluble Chemistry of Martian Soil at the Phoenix Lander Site , 2009, Science.

[45]  Harry Y. McSween,et al.  Elemental Composition of the Martian Crust , 2009, Science.

[46]  Stephanie C. Werner,et al.  Theoretical analysis of secondary cratering on Mars and an image-based study on the Cerberus Plains , 2009 .

[47]  J. Michalski,et al.  Meridiani Planum sediments on Mars formed through weathering in massive ice deposits , 2009 .

[48]  D. Ming,et al.  Geochemical properties of rocks and soils in Gusev Crater, Mars: Results of the Alpha Particle X-Ray Spectrometer from Cumberland Ridge to Home Plate , 2008 .

[49]  D. Ming,et al.  Iron mineralogy and aqueous alteration from Husband Hill through Home Plate at Gusev Crater, Mars: Results from the Mössbauer instrument on the Spirit Mars Exploration Rover , 2008 .

[50]  K. Righter,et al.  Oxygen fugacity in the Martian mantle controlled by carbon: New constraints from the nakhlite MIL 03346 , 2008 .

[51]  G. Neukum,et al.  Geomorphic study of fluvial landforms on the northern Valles Marineris plateau, Mars , 2008 .

[52]  S. Squyres,et al.  Mineralogy of volcanic rocks in Gusev Crater, Mars: Reconciling Mössbauer, Alpha Particle X‐Ray Spectrometer, and Miniature Thermal Emission Spectrometer spectra , 2008 .

[53]  R. Greeley,et al.  Olympus Mons, Mars: Inferred changes in late Amazonian aged effusive activity from lava flow mapping of Mars Express High Resolution Stereo Camera data , 2007 .

[54]  V. Chevrier,et al.  Mineralogy and evolution of the surface of Mars: A review , 2007 .

[55]  D. Baker,et al.  An experimental study of mass transfer of platinum-group elements, gold, nickel and copper in sulfur-dominated vapor at magmatic temperatures , 2006 .

[56]  T. Encrenaz,et al.  Global Mineralogical and Aqueous Mars History Derived from OMEGA/Mars Express Data , 2006, Science.

[57]  Steven W. Squyres,et al.  Alpha Particle X‐Ray Spectrometer (APXS): Results from Gusev crater and calibration report , 2006 .

[58]  S. McLennan,et al.  Chemical divides and evaporite assemblages on Mars , 2006 .

[59]  B. Hynek,et al.  A volcanic environment for bedrock diagenesis at Meridiani Planum on Mars , 2005, Nature.

[60]  Jeffrey R. Johnson,et al.  Provenance and diagenesis of the evaporite-bearing Burns formation, Meridiani Planum, Mars , 2005 .

[61]  P. Mouginis-Mark,et al.  New observations of volcanic features on Mars from the THEMIS instrument , 2005 .

[62]  Amitabha Ghosh,et al.  An integrated view of the chemistry and mineralogy of martian soils , 2005, Nature.

[63]  R E Arvidson,et al.  Spectral Reflectance and Morphologic Correlations in Eastern Terra Meridiani, Mars , 2005, Science.

[64]  Jean-Pierre Bibring,et al.  Sulfates in Martian Layered Terrains: The OMEGA/Mars Express View , 2005, Science.

[65]  Jeffrey R. Johnson,et al.  In Situ Evidence for an Ancient Aqueous Environment at Meridiani Planum, Mars , 2004, Science.

[66]  Harry Y. McSween,et al.  The rocks of Mars, from far and near , 2002 .

[67]  W. Hartmann Martian cratering VI: Crater count isochrons and evidence for recent volcanism from Mars Global Surveyor , 1999 .

[68]  A. McEwen,et al.  Voluminous volcanism on early Mars revealed in Valles Marineris , 1999, Nature.

[69]  B. Fegley,et al.  An Oxygen Isotope Model for the Composition of Mars , 1997 .

[70]  G. Dreibus,et al.  Mars, a Volatile-Rich Planet , 1985 .

[71]  H. D. Holland,et al.  The partitioning of copper and molybdenum between silicate melts and aqueous fluids , 1984 .

[72]  S. McLennan,et al.  Geochemical Reservoirs and Timing of Sulfur Cycling on Mars , 2013 .