A comparison of approaches for the solution of the Wigner equation

[1]  Jean Michel D. Sellier,et al.  The Wigner-Boltzmann Monte Carlo method applied to electron transport in the presence of a single dopant , 2014, Comput. Phys. Commun..

[2]  Siegfried Selberherr,et al.  A benchmark study of the Wigner Monte Carlo method , 2014, Monte Carlo Methods Appl..

[3]  S. Selberherr,et al.  Two-dimensional transient wigner particle model , 2013, 2013 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD).

[4]  Dragica Vasileska,et al.  Wigner quasi-particle attributes—An asymptotic perspective , 2013 .

[5]  Fausto Rossi,et al.  Wigner-function formalism applied to semiconductor quantum devices: Failure of the conventional boundary condition scheme , 2013, 1302.2750.

[6]  Dragica Vasileska,et al.  Nano-Electronic Devices: Semiclassical and Quantum Transport Modeling , 2011 .

[7]  Damien Querlioz,et al.  The Wigner Monte Carlo Method for Nanoelectronic Devices: A Particle Description of Quantum Transport and Decoherence , 2010 .

[8]  Dragica Vasileska,et al.  Mixed initial-boundary value problem in particle modeling of microelectronic devices , 2007, Monte Carlo Methods Appl..

[9]  Sean McKee,et al.  Monte Carlo Methods for Applied Scientists , 2005 .

[10]  H. Kosina,et al.  Wigner Function-Based Simulation of Quantum Transport in Scaled DG-MOSFETs Using a Monte Carlo Method , 2005 .

[11]  D. Vasileska,et al.  A Self-Consistent Event Biasing Scheme for Statistical Enhancement , 2004, 2004 Abstracts 10th International Workshop on Computational Electronics.

[12]  S. Selberherr,et al.  Unified particle approach to Wigner-Boltzmann transport in small semiconductor devices , 2004 .

[13]  David K. Ferry,et al.  A Wigner Function Based Ensemble Monte Carlo Approach for Accurate Incorporation of Quantum Effects in Device Simulation , 2002 .

[14]  L. Shifren,et al.  The Effective Potential in Device Modeling: The Good, the Bad and the Ugly , 2002 .

[15]  David K. Ferry,et al.  Wigner function quantum Monte Carlo , 2002 .

[16]  Lucian Shifren,et al.  Particle Monte Carlo simulation of Wigner function tunneling , 2001 .

[17]  Byoungho Lee,et al.  On the high order numerical calculation schemes for the Wigner transport equation , 1999 .

[18]  William R. Frensley,et al.  Boundary conditions for open quantum systems driven far from equilibrium , 1990 .

[19]  Mohamed A. Osman,et al.  Investigation of ballistic transport through resonant-tunnelling quantum wells using wigner function approach , 1985 .

[20]  Judah L. Schwartz,et al.  Computer-Generated Motion Pictures of One-Dimensional Quantum-Mechanical Transmission and Reflection Phenomena , 1967 .

[21]  J. Mayer,et al.  On the Quantum Correction for Thermodynamic Equilibrium , 1947 .

[22]  D. Vasileska,et al.  Nano-Electronic Devices , 2011 .

[23]  B. Henderson-Sellers,et al.  Mathematics and Computers in Simulation , 1995 .