A new CBIR approach based on relevance feedback and optimum-path forest classification

Recently some CBIR approaches have shown the use of relevance feedback to train a pattern classifier to select relevant images for retrieval. This paper revisits this strategy by using an optimum-path forest (OPF) classifier. During relevance feedback iterations, the proposed method uses the OPF classifier to decide which database images are relevant or not. Images classified as relevant are sorted and presented to the user for a new iteration. Such images are ordered according to the normalized distance using relevant and irrelevant representative images, computed previously by the OPF classifier. Our experiments show that the proposed approach requires fewer iterations, being faster and more effective than methods based on SVM.

[1]  Mario A. Nascimento,et al.  A compact and efficient image retrieval approach based on border/interior pixel classification , 2002, CIKM '02.

[2]  Xiangjian He,et al.  Classification Techniques in Pattern Recognition , 2005 .

[3]  Jianguo Zhang,et al.  The PASCAL Visual Object Classes Challenge , 2006 .

[4]  Kien A. Hua,et al.  Fast Query Point Movement Techniques for Large CBIR Systems , 2009, IEEE Transactions on Knowledge and Data Engineering.

[5]  Thomas S. Huang,et al.  Relevance feedback in image retrieval: A comprehensive review , 2003, Multimedia Systems.

[6]  James Ze Wang,et al.  Image retrieval: Ideas, influences, and trends of the new age , 2008, CSUR.

[7]  Jérome Fournier,et al.  Exploration and search-by-similarity in CBIR , 2003, 16th Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI 2003).

[8]  Thomas S. Huang,et al.  Content-based image retrieval with relevance feedback in MARS , 1997, Proceedings of International Conference on Image Processing.

[9]  Laurent Amsaleg,et al.  NV-Tree: An Efficient Disk-Based Index for Approximate Search in Very Large High-Dimensional Collections , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  Matthieu Cord,et al.  High-dimensional descriptor indexing for large multimedia databases , 2008, CIKM '08.

[11]  Ricardo da Silva Torres,et al.  Content-Based Image Retrieval: Theory and Applications , 2006, RITA.

[12]  J. J. Rocchio,et al.  Relevance feedback in information retrieval , 1971 .

[13]  Edward Y. Chang,et al.  Support vector machine active learning for image retrieval , 2001, MULTIMEDIA '01.

[14]  James Ze Wang,et al.  SIMPLIcity: Semantics-Sensitive Integrated Matching for Picture LIbraries , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Wen Gao,et al.  Adaptive relevance feedback based on Bayesian inference for image retrieval , 2005, Signal Process..

[16]  Ryuatrou Ohbuchi,et al.  Combining Multiresolution Shape Descriptors for 3D Model Retrieval , 2006 .

[17]  Edward A. Fox,et al.  A genetic programming framework for content-based image retrieval , 2009, Pattern Recognit..

[18]  João Paulo Papa,et al.  Supervised pattern classification based on optimum‐path forest , 2009, Int. J. Imaging Syst. Technol..

[19]  Luc Van Gool,et al.  The 2005 PASCAL Visual Object Classes Challenge , 2005, MLCW.

[20]  Richard A. Johnson,et al.  Applied Multivariate Statistical Analysis , 1983 .

[21]  Deok-Hwan Kim,et al.  QCluster: relevance feedback using adaptive clustering for content-based image retrieval , 2003, SIGMOD '03.

[22]  Bernt Schiele,et al.  Analyzing appearance and contour based methods for object categorization , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..