Spectral database constitutive representation within a spectral micromechanical solver for computationally efficient polycrystal plasticity modelling

We present the first successful implementation of a spectral crystal plasticity (SCP) model into a spectral visco-plastic fast Fourier transform (VPFFT) full-field solver. The SCP database allows for non-iterative retrieval of constitutive solutions for a crystal of any orientation subjected to any state of deformation at every voxel representing an FFT point of the overall voxel-based polycrystalline microstructure. Details of this approach are described and validated through example case studies involving a rigid-visco-plastic response and microstructure evolution of polycrystalline copper. It is observed that the novel implementation is able to speed up the overall VPFFT calculations because the conventional Newton–Raphson iterative solution procedure for single crystals in VPFFT is replaced by the more efficient SCP constitutive representation of the solution. As a result, the implementation facilitates efficient simulations of large voxel-based microstructures. Additionally, it provides an incentive for conceiving a multi-level SCP–VPFFT computational scheme. Here, every FFT point of the model is a polycrystal whose response is calculated using a Taylor-type homogenization.

[1]  Daniel A. Tortorelli,et al.  Investigation of Preferred Orientations in Planar Polycrystals , 2008 .

[2]  Ricardo A. Lebensohn,et al.  A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals : application to zirconium alloys , 1993 .

[3]  Matti Ristinmaa,et al.  Accelerating crystal plasticity simulations using GPU multiprocessors , 2014 .

[4]  U. F. Kocks,et al.  The relation between macroscopic and microscopic strain hardening in F.C.C. polycrystals , 1984 .

[5]  D. Gaston,et al.  Crystal plasticity with Jacobian-Free Newton–Krylov , 2013 .

[6]  Dierk Raabe,et al.  Comparison of finite element and fast Fourier transform crystal plasticity solvers for texture prediction , 2010 .

[7]  Surya R. Kalidindi,et al.  Spectral Approaches for the Fast Computation of Yield Surfaces and First-Order Plastic Property Closures for Polycrystalline Materials with Cubic-Triclinic Textures , 2010 .

[8]  I. Beyerlein,et al.  Texture formation in orthorhombic alpha-uranium under simple compression and rolling to high strains , 2016 .

[9]  Hamid Garmestani,et al.  Evolution of crystal orientation distribution coefficients during plastic deformation , 2003 .

[10]  Dilational Response of Voided Polycrystals , 2017 .

[11]  R. Lebensohn,et al.  Modeling viscoplastic behavior and heterogeneous intracrystalline deformation of columnar ice polycrystals , 2009 .

[12]  Surya R. Kalidindi,et al.  Representation of the orientation distribution function and computation of first-order elastic properties closures using discrete Fourier transforms , 2009 .

[13]  P. Dawson,et al.  Polycrystal plasticity modeling of bulk forming with finite elements over orientation space , 1995 .

[14]  Surya R. Kalidindi,et al.  Fast computation of first-order elastic–plastic closures for polycrystalline cubic-orthorhombic microstructures , 2007 .

[15]  A. Rollett,et al.  Fast fourier transform-based modeling for the determination of micromechanical fields in polycrystals , 2011 .

[16]  I. Beyerlein,et al.  A numerical procedure enabling accurate descriptions of strain rate-sensitive flow of polycrystals within crystal visco-plasticity theory , 2016 .

[17]  I. Beyerlein,et al.  Material-based design of the extrusion of bimetallic tubes , 2014 .

[18]  Georges Cailletaud,et al.  Distribution of normal stress at grain boundaries in multicrystals: application to an intergranular damage modeling , 2002 .

[19]  Hervé Moulinec,et al.  A computational scheme for linear and non‐linear composites with arbitrary phase contrast , 2001 .

[20]  U. F. Kocks,et al.  Application of polycrystal plasticity to sheet forming , 1994 .

[21]  I. Beyerlein,et al.  An elasto-plastic self-consistent model with hardening based on dislocation density, twinning and de-twinning: Application to strain path changes in HCP metals , 2015 .

[22]  Surya R. Kalidindi,et al.  Delineation of first-order closures for plastic properties requiring explicit consideration of strain hardening and crystallographic texture evolution , 2008 .

[23]  I. Beyerlein,et al.  A study of microstructure-driven strain localizations in two-phase polycrystalline HCP/BCC composites using a multi-scale model , 2015 .

[24]  Surya R. Kalidindi,et al.  Building texture evolution networks for deformation processing of polycrystalline fcc metals using spectral approaches: Applications to process design for targeted performance , 2010 .

[25]  I. Beyerlein,et al.  Texture evolution and enhanced grain refinement under high-pressure-double-torsion , 2014 .

[26]  Toshio Mura,et al.  Micromechanics of defects in solids , 1982 .

[27]  I. Beyerlein,et al.  A strain-rate and temperature dependent constitutive model for BCC metals incorporating non-Schmid effects: Application to tantalum–tungsten alloys , 2014 .

[28]  H. Bunge Texture Analysis in Materials Science , 1982 .

[29]  R. Mccabe,et al.  Spectral database solutions to elasto-viscoplasticity within finite elements: Application to a cobalt-based FCC superalloy , 2015 .

[30]  Marko Knezevic,et al.  A high-performance computational framework for fast crystal plasticity simulations , 2014 .

[31]  Ricardo A. Lebensohn,et al.  Integration of self-consistent polycrystal plasticity with dislocation density based hardening laws within an implicit finite element framework: Application to low-symmetry metals , 2013 .

[32]  S. Kalidindi,et al.  Application of microstructure sensitive design to structural components produced from hexagonal polycrystalline metals , 2008 .

[33]  R. Lebensohn N-site modeling of a 3D viscoplastic polycrystal using Fast Fourier Transform , 2001 .

[34]  M. Knezevic,et al.  High-Pressure Double Torsion as a Severe Plastic Deformation Process: Experimental Procedure and Finite Element Modeling , 2015, Journal of Materials Engineering and Performance.

[35]  I. Beyerlein,et al.  Explicit incorporation of deformation twins into crystal plasticity finite element models , 2015 .

[36]  I. Beyerlein,et al.  Strain rate and temperature sensitive multi-level crystal plasticity model for large plastic deformation behavior: Application to AZ31 magnesium alloy , 2016 .

[37]  Paul R. Dawson,et al.  On modeling the development of crystallographic texture in bulk forming processes , 1989 .

[38]  Jaroslaw Knap,et al.  A call to arms for task parallelism in multi‐scale materials modeling , 2011 .

[39]  J. Hutchinson,et al.  Bounds and self-consistent estimates for creep of polycrystalline materials , 1976, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[40]  Yi Liu,et al.  On the accuracy of the self-consistent approximation for polycrystals: comparison with full-field numerical simulations , 2004 .

[41]  Nathan R. Barton,et al.  The use of discrete harmonics in direct multi-scale embedding of polycrystal plasticity , 2015 .

[42]  D. Fullwood,et al.  Computationally efficient database and spectral interpolation for fully plastic Taylor-type crystal plasticity calculations of face-centered cubic polycrystals , 2008 .

[43]  U. F. Kocks,et al.  Physics and phenomenology of strain hardening: the FCC case , 2003 .

[44]  D. Tortorelli,et al.  Two stochastic mean-field polycrystal plasticity methods , 2009 .

[45]  Surya R. Kalidindi,et al.  Spectral calibration of crystal plasticity models , 2006 .

[46]  Alan Needleman,et al.  An analysis of nonuniform and localized deformation in ductile single crystals , 1982 .

[47]  I. Beyerlein,et al.  Transitioning rate sensitivities across multiple length scales: Microstructure-property relationships in the Taylor cylinder impact test on zirconium , 2016 .

[48]  I. Beyerlein,et al.  Three dimensional predictions of grain scale plasticity and grain boundaries using crystal plasticity finite element models , 2014 .

[49]  Surya R. Kalidindi,et al.  Application of Microstructure Sensitive Design to FCC Polycrystals , 2007 .

[50]  L. Anand,et al.  Crystallographic texture evolution in bulk deformation processing of FCC metals , 1992 .

[51]  M. Knezevic,et al.  A dislocation density based elasto-plastic self-consistent model for the prediction of cyclic deformation: Application to AA6022-T4 , 2015 .

[52]  Yannis P. Korkolis,et al.  Dual-phase steel sheets under cyclic tension–compression to large strains: Experiments and crystal plasticity modeling , 2016 .

[53]  M. Diehl,et al.  Solving finite-deformation crystal elasto-viscoplasticity with a fast Fourier transformation-based spectral method , 2011 .

[54]  I. Beyerlein,et al.  A dislocation density based crystal plasticity finite element model: Application to a two-phase polycrystalline HCP/BCC composites , 2014 .

[55]  R. Mccabe,et al.  Average intragranular misorientation trends in polycrystalline materials predicted by a viscoplastic self-consistent approach , 2016 .

[56]  A. Rollett,et al.  Orientation image-based micromechanical modelling of subgrain texture evolution in polycrystalline copper , 2008 .

[57]  Hervé Moulinec,et al.  A numerical method for computing the overall response of nonlinear composites with complex microstructure , 1998, ArXiv.

[58]  E. Voce,et al.  The relationship between stress and strain for homogeneous deformations , 1948 .

[59]  S. Kalidindi,et al.  Crystal Plasticity Modeling of Microstructure Evolution and Mechanical Fields During Processing of Metals Using Spectral Databases , 2017 .

[60]  G. C. Johnson,et al.  Three-dimensional deformation process simulation with explicit use of polycrystal plasticity models , 1993 .

[61]  H. Wenk,et al.  Texture and Anisotropy , 2004 .

[62]  Richard D. Hornung,et al.  Embedded polycrystal plasticity and adaptive sampling , 2008 .

[63]  I. Beyerlein,et al.  Enhancement of orientation gradients during simple shear deformation by application of simple compression , 2015 .

[64]  R. A. Lebensohn,et al.  Self-consistent modelling of the mechanical behaviour of viscoplastic polycrystals incorporating intragranular field fluctuations , 2007 .

[65]  Marko Knezevic,et al.  Three orders of magnitude improved efficiency with high‐performance spectral crystal plasticity on GPU platforms , 2014 .

[66]  Marko Knezevic,et al.  Computer implementations of iterative and non-iterative crystal plasticity solvers on high performance graphics hardware , 2015 .

[67]  S. Kalidindi,et al.  Crystal plasticity simulations using discrete Fourier transforms , 2009 .

[68]  M. Knezevic,et al.  Modeling of Sheet Metal Forming Based on Implicit Embedding of the Elasto-Plastic Self-Consistent Formulation in Shell Elements: Application to Cup Drawing of AA6022-T4 , 2017 .

[69]  Jitesh H. Panchal,et al.  Key computational modeling issues in Integrated Computational Materials Engineering , 2013, Comput. Aided Des..

[70]  I. Beyerlein,et al.  The plasticity of highly oriented nano-layered Zr/Nb composites , 2016 .

[71]  R. Asaro,et al.  Overview no. 42 Texture development and strain hardening in rate dependent polycrystals , 1985 .

[72]  G. Proust,et al.  Modeling bending of α-titanium with embedded polycrystal plasticity in implicit finite elements , 2013 .

[73]  R. Mccabe,et al.  A new implementation of the spectral crystal plasticity framework in implicit finite elements , 2015 .

[74]  M. Knezevic,et al.  Procedures for reducing large datasets of crystal orientations using generalized spherical harmonics , 2015 .

[75]  Christoph Fahrenson,et al.  Effect of age hardening on the deformation behavior of an Mg–Y–Nd alloy: In-situ X-ray diffraction and crystal plasticity modeling , 2015 .

[76]  Ricardo A. Lebensohn,et al.  Simulation of micromechanical behavior of polycrystals: finite elements versus fast Fourier transforms , 2009 .

[77]  J. Segurado,et al.  Multiscale modeling of plasticity based on embedding the viscoplastic self-consistent formulation in implicit finite elements , 2012 .

[78]  Surya R. Kalidindi,et al.  Elastic–plastic property closures for hexagonal close-packed polycrystalline metals using first-order bounding theories , 2007 .

[79]  Geoffrey Ingram Taylor,et al.  The Plastic Distortion of Metals , 1932 .

[80]  P. Maudlin,et al.  Computational anisotropic plasticity for high-rate forming applications , 1996 .

[81]  M. Knezevic,et al.  Delineation of First-Order Elastic Property Closures for Hexagonal Metals Using Fast Fourier Transforms , 2015, Materials.

[82]  P. Van Houtte,et al.  Application of plastic potentials to strain rate sensitive and insensitive anisotropic materials , 1994 .

[83]  I. Beyerlein,et al.  Anisotropic modeling of structural components using embedded crystal plasticity constructive laws within finite elements , 2016 .

[84]  I. Beyerlein,et al.  Anomalous Basal Slip Activity in Zirconium under High-strain Deformation , 2013 .