Alkaline extractability of pectic arabinan and galactan and their mobility in sugar beet and potato cell walls

[1]  P. A. Roelofsen The plant cell-wall , 1959 .

[2]  J. Thibault Automatisation du dosage des substances pectiques par la methode au metahydroxydiphenyle , 1979 .

[3]  R. Henry,et al.  A SIMPLE AND RAPID PREPARATION OF ALDITOL ACETATES FOR MONOSACCHARIDE ANALYSIS , 1983 .

[4]  T. Hayashi,et al.  Pea xyloglucan and cellulose : I. Macromolecular organization. , 1984, Plant physiology.

[5]  S. Fry The Structure and Functions of Xyloglucan , 1989 .

[6]  Takahisa Hayashi,et al.  Xyloglucans in the Primary Cell Wall , 1989 .

[7]  J. Sugiyama,et al.  Electron diffraction study on the two crystalline phases occurring in native cellulose from an algal cell wall , 1991 .

[8]  C. Renard,et al.  Structure and properties of apple and sugar-beet pectins extracted by chelating agents , 1993 .

[9]  N. Carpita,et al.  Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. , 1993, The Plant journal : for cell and molecular biology.

[10]  C. Renard,et al.  STRUCTURE OF THE REPEATING UNITS IN THE RHAMNOGALACTURONIC BACKBONE OF APPLE, BEET AND CITRUS PECTINS , 1995 .

[11]  M. Ha,et al.  CP-MAS NMR of highly mobile hydrated biopolymers: Polysaccharides of Allium cell walls , 1996 .

[12]  E. Macrae,et al.  Galactose loss and fruit ripening: high-molecular-weight arabinogalactans in the pectic polysaccharides of fruit cell walls , 1997, Planta.

[13]  M. Ha,et al.  Molecular Rigidity in Dry and Hydrated Onion Cell Walls , 1997, Plant physiology.

[14]  W. York,et al.  Adhesion of β-d-glucans to cellulose , 1998 .

[15]  Jarvis,et al.  A cross-polarization, magic-angle-spinning, 13C-nuclear-magnetic-resonance study of polysaccharides in sugar beet cell walls , 1999, Plant physiology.

[16]  D J Cosgrove,et al.  Expansive growth of plant cell walls. , 2000, Plant physiology and biochemistry : PPB.

[17]  A. Voragen,et al.  Characterization of arabinose and ferulic acid rich pectic polysaccharides and hemicelluloses from sugar beet pulp. , 2000, Carbohydrate research.

[18]  M. Gidley,et al.  Temporal and spatial regulation of pectic (1-->4)-beta-D-galactan in cell walls of developing pea cotyledons: implications for mechanical properties. , 2000, The Plant journal : for cell and molecular biology.

[19]  Brunel,et al.  Aspergillus niger I-1472 and Pycnoporus cinnabarinus MUCL39533, selected for the biotransformation of ferulic acid to vanillin, are also able to produce cell wall polysaccharide-degrading enzymes and feruloyl esterases. , 2001, Enzyme and microbial technology.

[20]  T. Ishii,et al.  Pectic polysaccharide rhamnogalacturonan II is covalently linked to homogalacturonan. , 2001, Phytochemistry.

[21]  D. Burritt,et al.  Celery (Apium graveolens) parenchyma cell walls: cell walls with minimal xyloglucan. , 2002, Physiologia plantarum.

[22]  Diego A. Navarro,et al.  NMR spectroscopy and chemical studies of an arabinan-rich system from the endosperm of the seed of Gleditsia triacanthos. , 2002, Carbohydrate research.

[23]  J. Thibault,et al.  Characterisation of pectins extracted from fresh sugar beet under different conditions using an experimental design , 2002 .

[24]  R. Amadó,et al.  Pectic substances isolated from apple cellulosic residue: structural characterisation of a new type of rhamnogalacturonan I , 2003 .

[25]  C. Rondeau-Mouro,et al.  Solid-state 13C NMR spectroscopy studies of xylans in the cell wall of Palmaria palmata (L. Kuntze, Rhodophyta). , 2003, Carbohydrate research.

[26]  C. Rondeau-Mouro,et al.  Application of CP-MAS and liquid-like solid-state NMR experiments for the study of the ripening-associated cell wall changes in tomato. , 2003, International journal of biological macromolecules.

[27]  C. Rondeau-Mouro,et al.  Structural features and potential texturising properties of lemon and maize cellulose microfibrils , 2003 .

[28]  M. Vignon,et al.  Arabinan-cellulose composite in Opuntia ficus-indica prickly pear spines. , 2004, Carbohydrate research.

[29]  R. Newman,et al.  Solid-state 13C-NMR spectroscopy shows that the xyloglucans in the primary cell walls of mung bean (Vigna radiata L.) occur in different domains: a new model for xyloglucan-cellulose interactions in the cell wall. , 2004, Journal of experimental botany.

[30]  N. Carpita,et al.  Loss of Highly Branched Arabinans and Debranching of Rhamnogalacturonan I Accompany Loss of Firm Texture and Cell Separation during Prolonged Storage of Apple1 , 2004, Plant Physiology.

[31]  Tadashi Ishii,et al.  Rhamnogalacturonan II: structure and function of a borate cross-linked cell wall pectic polysaccharide. , 2004, Annual review of plant biology.

[32]  David Stuart Thompson,et al.  How do cell walls regulate plant growth? , 2005, Journal of experimental botany.

[33]  J. Thibault,et al.  Evidence for In Vitro Binding of Pectin Side Chains to Cellulose1 , 2005, Plant Physiology.

[34]  R. Chandrasekaran,et al.  Polysaccharide structures from powder diffraction data: molecular models of arabinan. , 2005, Carbohydrate research.

[35]  Glyn O. Phillips,et al.  Food Polysaccharides and Their Applications , 2006 .