Nanohole array plasmonic biosensors: Emerging point-of-care applications.

Point-of-care (POC) applications have expanded hugely in recent years and is likely to continue, with an aim to deliver cheap, portable, and reliable devices to meet the demands of healthcare industry. POC devices are designed, prototyped, and assembled using numerous strategies but the key essential features that biosensing devices require are: (1) sensitivity, (2) selectivity, (3) specificity, (4) repeatability, and (5) good limit of detection. Overall the fabrication and commercialization of the nanohole array (NHA) setup to the outside world still remains a challenge. Here, we review the various methods of NHA fabrication, the design criteria, the geometrical features, the effects of surface plasmon resonance (SPR) on sensing as well as current state-of-the-art of existing NHA sensors. This review also provides easy-to-understand examples of NHA-based POC biosensing applications, its current status, challenges, and future prospects.

[1]  Mark B. Carter,et al.  The Targeted Delivery of Multicomponent Cargos to Cancer Cells via Nanoporous Particle-Supported Lipid Bilayers , 2011, Nature materials.

[2]  S. Habraken,et al.  Surface plasmon resonance-based biosensors: From the development of different SPR structures to novel surface functionalization strategies , 2011 .

[3]  Swee Yin Lim,et al.  Plasmonic nanohole arrays for monitoring growth of bacteria and antibiotic susceptibility test , 2013 .

[4]  N. Hatzakis,et al.  How curved membranes recruit amphipathic helices and protein anchoring motifs. , 2009, Nature chemical biology.

[5]  T. Ebbesen,et al.  Light in tiny holes , 2007, Nature.

[6]  Deitze Otaduy,et al.  Real-Time Label-Free Surface Plasmon Resonance Biosensing with Gold Nanohole Arrays Fabricated by Nanoimprint Lithography , 2013, Sensors.

[7]  J. Carson,et al.  Transillumination hyperspectral imaging for histopathological examination of excised tissue. , 2011, Journal of biomedical optics.

[8]  P. Bettotti Submicron Porous Materials , 2017 .

[9]  Yasha Yi,et al.  Efficiency enhancement in Si solar cells by textured photonic crystal back reflector , 2006 .

[10]  Teri W Odom,et al.  Multiscale patterning of plasmonic metamaterials. , 2007, Nature nanotechnology.

[11]  Stefan Enoch,et al.  Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory , 2005 .

[12]  B. Ju,et al.  Flexible Plasmonic Color Filters Fabricated via Nanotransfer Printing with Nanoimprint-Based Planarization. , 2017, ACS applied materials & interfaces.

[13]  A. E. Cetin,et al.  Lensfree optofluidic plasmonic sensor for real-time and label-free monitoring of molecular binding events over a wide field-of-view , 2014, Scientific Reports.

[14]  P. Crozat,et al.  Experimental demonstration of complete photonic band gap in graphite structure , 1997 .

[15]  Ki-Dong Lee,et al.  Color filter based on a subwavelength patterned metal grating , 2007 .

[16]  T. Odom,et al.  Using the angle-dependent resonances of molded plasmonic crystals to improve the sensitivities of biosensors. , 2010, Nano letters.

[17]  Eun Kyu Lee,et al.  SERS-based multiple biomarker detection using a gold-patterned microarray chip , 2012 .

[18]  J. Shim,et al.  High-fidelity optofluidic on-chip sensors using well-defined gold nanowell crystals. , 2011, Analytical chemistry.

[19]  Ludovic S. Live,et al.  Nanohole arrays in chemical analysis: manufacturing methods and applications. , 2010, The Analyst.

[20]  Hakho Lee,et al.  Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor , 2014, Nature Biotechnology.

[21]  Jiming Bao,et al.  Transmissive Nanohole Arrays for Massively-Parallel Optical Biosensing , 2014, ACS photonics.

[22]  R. Horváth,et al.  Reverse-symmetry waveguides: theory and fabrication , 2002 .

[23]  Pei-Wen Chen,et al.  Enhancing surface plasmon detection using template-stripped gold nanoslit arrays on plastic films. , 2012, ACS nano.

[24]  A. E. Cetin,et al.  Plasmonic Sensor Could Enable Label-Free DNA Sequencing. , 2018, ACS Sensors.

[25]  R. Tampé,et al.  Activation of G-protein-coupled receptors in cell-derived plasma membranes supported on porous beads. , 2011, Journal of the American Chemical Society.

[26]  Hong‐Bo Sun,et al.  Laser interference fabrication of large-area functional periodic structure surface , 2018, Frontiers of Mechanical Engineering.

[27]  J. Bausells,et al.  Nanoparticles with tunable shape and composition fabricated by nanoimprint lithography , 2015, Nanotechnology.

[28]  Sunggook Park,et al.  Selection of UV-resins for nanostructured molds for thermal-NIL , 2018, Nanotechnology.

[29]  K. Kavanagh,et al.  A new generation of sensors based on extraordinary optical transmission. , 2008, Accounts of chemical research.

[30]  Nemanya Sedoglavich,et al.  Gold nanohole array substrates as immunobiosensors. , 2008, Analytical chemistry.

[31]  Andreas B. Dahlin,et al.  Biosensing using plasmonic nanohole arrays with small, homogenous and tunable aperture diameters. , 2016, The Analyst.

[32]  J. Carson,et al.  Nanohole-array-based device for 2D snapshot multispectral imaging , 2013, Scientific Reports.

[33]  Z. Zeng,et al.  Protein Trapping in Plasmonic Nanoslit and Nanoledge Cavities: The Behavior and Sensing. , 2017, Analytical chemistry.

[34]  C. R. Martin,et al.  Carbon nanotubule membranes for electrochemical energy storage and production , 1998, Nature.

[35]  C. Escobedo,et al.  Cost-effective flow-through nanohole array-based biosensing platform for the label-free detection of uropathogenic E. coli in real time. , 2018, Biosensors & bioelectronics.

[36]  H. C. Pedersen,et al.  Multimode reverse-symmetry waveguide sensor for broad-range refractometry. , 2003, Optics letters.

[37]  Frank F Bier,et al.  Integrated planar optical waveguide interferometer biosensors: a comparative review. , 2014, Biosensors & bioelectronics.

[38]  Prashant Nagpal,et al.  Three-dimensional plasmonic nanofocusing. , 2010, Nano letters.

[39]  G. Whitesides,et al.  Light Trapping in Ultrathin Plasmonic Solar Cells References and Links , 2022 .

[40]  Jongmin Park,et al.  Analyses of Intravesicular Exosomal Proteins Using a Nano-Plasmonic System. , 2017, ACS photonics.

[41]  Lin Wu,et al.  Designing surface plasmon resonance of subwavelength hole arrays by studying absorption , 2012 .

[42]  Fredrik Höök,et al.  Supported lipid bilayer formation and lipid-membrane-mediated biorecognition reactions studied with a new nanoplasmonic sensor template. , 2007, Nano letters.

[43]  R. Seisyan Nanolithography in microelectronics: A review , 2011 .

[44]  Florence Sanchez,et al.  Nanotechnology in concrete – A review , 2010 .

[45]  Christopher G Poulton,et al.  Mode-based analysis of silicon nanohole arrays for photovoltaic applications. , 2014, Optics express.

[46]  Hua Bao,et al.  Optical absorption enhancement in disordered vertical silicon nanowire arrays for photovoltaic applications. , 2010, Optics letters.

[47]  K. Salaita,et al.  Using patterned supported lipid membranes to investigate the role of receptor organization in intercellular signaling , 2011, Nature Protocols.

[48]  Linyou Cao,et al.  Engineering light absorption in semiconductor nanowire devices. , 2009, Nature materials.

[49]  C. W. Hagen,et al.  Resists for sub-20-nm electron beam lithography with a focus on HSQ: state of the art , 2009, Nanotechnology.

[50]  H. C. Pedersen,et al.  Demonstration of reverse symmetry waveguide sensing in aqueous solutions , 2002 .

[51]  H. Duan,et al.  Rapid Focused Ion Beam Milling Based Fabrication of Plasmonic Nanoparticles and Assemblies via "Sketch and Peel" Strategy. , 2016, ACS nano.

[52]  Peng Liu,et al.  Label-free and real-time monitoring of single cell attachment on template-stripped plasmonic nano-holes , 2017, Scientific Reports.

[53]  Gang Chen,et al.  Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics. , 2010, Nano letters.

[54]  L. J. Guo,et al.  Nanoimprint Lithography: Methods and Material Requirements , 2007 .

[55]  G. Whitesides,et al.  Self-assembled monolayers of thiolates on metals as a form of nanotechnology. , 2005, Chemical reviews.

[56]  Sang‐Hyun Oh,et al.  Membrane protein biosensing with plasmonic nanopore arrays and pore-spanning lipid membranes. , 2010, Chemical science.

[57]  A. Brolo,et al.  Improving the performance of gold nanohole array biosensors by controlling the optical collimation conditions. , 2015, Applied optics.

[58]  David Sinton,et al.  Attomolar protein detection using in-hole surface plasmon resonance. , 2009, Journal of the American Chemical Society.

[59]  Andras Hamori,et al.  Grating coupled optical waveguide interferometer for label-free biosensing , 2011 .

[60]  S. Ang,et al.  Reactive Ion Etching of Thin Gold Films , 1993 .

[61]  Edmond Cambril,et al.  Gold nanohole arrays for biochemical sensing fabricated by soft UV nanoimprint lithography , 2009 .

[62]  Harry A Atwater,et al.  Plasmonic color filters for CMOS image sensor applications. , 2012, Nano letters.

[63]  Sang‐Hyun Oh,et al.  Ultrasmooth Patterned Metals for Plasmonics and Metamaterials , 2009, Science.

[64]  Bozena Kaminska,et al.  Optical resonance transmission properties of nano-hole arrays in a gold film: effect of adhesion layer. , 2011, Optics express.

[65]  Dayang Wang,et al.  Colloidal lithography--the art of nanochemical patterning. , 2009, Chemistry, an Asian journal.

[66]  Pei-Kuen Wei,et al.  Ultrasensitive Biosensors Using Enhanced Fano Resonances in Capped Gold Nanoslit Arrays , 2015, Scientific Reports.

[67]  Akhlesh Lakhtakia,et al.  Optical Guided-wave Chemical and Biosensors II , 2009 .

[68]  Sang‐Hyun Oh,et al.  Engineering metallic nanostructures for plasmonics and nanophotonics , 2012, Reports on progress in physics. Physical Society.

[69]  J. Rogers,et al.  Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals , 2006, Proceedings of the National Academy of Sciences.

[70]  Yi Wang,et al.  Prostate specific antigen biosensor based on long range surface plasmon-enhanced fluorescence spectroscopy and dextran hydrogel binding matrix. , 2009, Analytical chemistry.

[71]  S. Chou,et al.  Imprint Lithography with 25-Nanometer Resolution , 1996, Science.

[72]  Tsuyoshi Nomura,et al.  Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes , 2011 .

[73]  Ye Fang,et al.  Resonant waveguide grating biosensor for living cell sensing. , 2006, Biophysical journal.

[74]  H. Lezec,et al.  Effects of hole depth on enhanced light transmission through subwavelength hole arrays , 2002 .

[75]  Qin Chen,et al.  CMOS Photodetectors Integrated With Plasmonic Color Filters , 2012, IEEE Photonics Technology Letters.

[76]  B. Ju,et al.  Plasmonic Chromatic Electrode with Low Resistivity , 2017, Scientific Reports.

[77]  N. Lindquist,et al.  Direct spectral imaging of plasmonic nanohole arrays for real-time sensing , 2016, Nanotechnology.

[78]  Sunggook Park,et al.  Fabrication of polymeric dual-scale nanoimprint molds using a polymer stencil membrane. , 2018, Microelectronic engineering.

[79]  Sung-hoon Ahn,et al.  Review: Developments in micro/nanoscale fabrication by focused ion beams , 2012 .

[80]  M. Wood Colloidal lithography and current fabrication techniques producing in-plane nanotopography for biological applications , 2007, Journal of The Royal Society Interface.

[81]  M. Roukes,et al.  Comparative advantages of mechanical biosensors. , 2011, Nature nanotechnology.

[82]  F. Lederer,et al.  Local versus global absorption in thin-film solar cells with randomly textured surfaces , 2008 .

[83]  Jung Ho Park,et al.  Nanopatterning by laser interference lithography: applications to optical devices. , 2014, Journal of nanoscience and nanotechnology.

[84]  E. Fabrizio,et al.  Plasmonic nanoholes as SERS devices for biosensing applications , 2017 .

[85]  J. Rand,et al.  Silicon Nanowire Solar Cells , 2007 .

[86]  Andreas Dahlin,et al.  Size Matters: Problems and Advantages Associated with Highly Miniaturized Sensors , 2012, Sensors.

[87]  Filiz Yesilköy,et al.  Plasmonic nanohole array biosensor for label-free and real-time analysis of live cell secretion. , 2017, Lab on a chip.

[88]  Jie Deng,et al.  High throughput and high yield nanofabrication of precisely designed gold nanohole arrays for fluorescence enhanced detection of biomarkers. , 2013, Lab on a chip.

[89]  Björn Persson,et al.  Surface plasmon fluorescence immunoassay of free prostate-specific antigen in human plasma at the femtomolar level. , 2004, Analytical chemistry.

[90]  Orlin D. Velev,et al.  Materials Fabricated by Micro‐ and Nanoparticle Assembly – The Challenging Path from Science to Engineering , 2009 .

[91]  K. Kavanagh,et al.  Basis and lattice polarization mechanisms for light transmission through nanohole arrays in a metal film. , 2005, Nano letters.

[92]  O. Muskens,et al.  Electron beam lithography tri-layer lift-off to create ultracompact metal/metal oxide 2D patterns on CaF2 substrate for surface-enhanced infrared spectroscopy , 2015 .

[93]  George M. Whitesides,et al.  Extending Microcontact Printing as a Microlithographic Technique , 1997 .

[94]  Bai Yang,et al.  Graded nanowell arrays: a fine plasmonic "library" with an adjustable spectral range. , 2017, Nanoscale.

[95]  Hyungsoon Im,et al.  Laser-illuminated nanohole arrays for multiplex plasmonic microarray sensing. , 2008, Optics express.

[96]  K. Kavanagh,et al.  Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[97]  Gaurasundar M Conley,et al.  Light transport and localization in two-dimensional correlated disorder. , 2013, Physical review letters.

[98]  H. Wackerbarth,et al.  Highly periodic Au nano-disc arrays for plasmon-resonant SERS structures on fused silica using UV-NIL based double-layer lift-off process , 2017 .

[99]  Prashant Nagpal,et al.  Template-stripped smooth Ag nanohole arrays with silica shells for surface plasmon resonance biosensing. , 2011, ACS nano.

[100]  Development of a mass-producible on-chip plasmonic nanohole array biosensor. , 2011, Nanoscale.

[101]  Stephen Y. Chou,et al.  Imprint of sub-25 nm vias and trenches in polymers , 1995 .

[102]  H. Altug,et al.  An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media. , 2010, Nano letters.

[103]  Qin Chen,et al.  High transmission and low color cross-talk plasmonic color filters using triangular-lattice hole arrays in aluminum films. , 2010, Optics express.

[104]  A. E. Cetin,et al.  Seeing protein monolayers with naked eye through plasmonic Fano resonances , 2011, Proceedings of the National Academy of Sciences.

[105]  Shao-Chin Tseng,et al.  Using the nanoimprint-in-metal method to prepare corrugated metal structures for plasmonic biosensors through both surface plasmon resonance and index-matching effects , 2012, 2012 IEEE Sensors.

[106]  Sang‐Hyun Oh,et al.  High-density arrays of submicron spherical supported lipid bilayers. , 2012, Analytical chemistry.

[107]  J. W. Menezes,et al.  Gold Nanohole Arrays Fabricated by Interference Lithography Technique as SERS Probes for Chemical Species Such As Rhodamine 6G and 4,4′-Bipyridine , 2017, Plasmonics.

[108]  M. Soler,et al.  Multiplexed nanoplasmonic biosensor for one-step simultaneous detection of Chlamydia trachomatis and Neisseria gonorrhoeae in urine. , 2017, Biosensors & bioelectronics.

[109]  S. Soper,et al.  Complete plastic nanofluidic devices for DNA analysis via direct imprinting with polymer stamps. , 2011, Lab on a chip.

[110]  Gang Chen,et al.  Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications. , 2007, Nano letters.

[111]  H. C. Pedersen,et al.  Deep-probe metal-clad waveguide biosensors. , 2007, Biosensors & bioelectronics.

[112]  Shujie Wang,et al.  Large-area gold nanohole arrays fabricated by one-step method for surface plasmon resonance biochemical sensing , 2018, Science China Life Sciences.

[113]  J. Jackel,et al.  Lift‐off of thick metal layers using multilayer resist , 1981 .

[114]  K. Kavanagh,et al.  Strong polarization in the optical transmission through elliptical nanohole arrays. , 2004, Physical review letters.

[115]  T. Green Gold etching for microfabrication , 2014, Gold Bulletin.

[116]  Sang‐Hyun Oh,et al.  Nanohole-based surface plasmon resonance instruments with improved spectral resolution quantify a broad range of antibody-ligand binding kinetics. , 2012, Analytical chemistry.

[117]  F. G. D. Abajo Colloquium: Light scattering by particle and hole arrays , 2007, 0903.1671.

[118]  Hatice Altug,et al.  Actively transporting virus like analytes with optofluidics for rapid and ultrasensitive biodetection. , 2013, Lab on a chip.

[119]  G. Jung,et al.  Full wafer scale near zero residual nano-imprinting lithography using UV curable monomer solution , 2005 .

[120]  Efstratios Skafidas,et al.  Filling schemes at submicron scale: Development of submicron sized plasmonic colour filters , 2014, Scientific Reports.

[121]  William R Arnold,et al.  Substrate binding to cytochrome P450-2J2 in Nanodiscs detected by nanoplasmonic Lycurgus cup arrays. , 2016, Biosensors & bioelectronics.

[122]  J. Springer,et al.  TCO and light trapping in silicon thin film solar cells , 2004 .

[123]  Sang‐Hyun Oh,et al.  Millimeter-Sized Suspended Plasmonic Nanohole Arrays for Surface-Tension-Driven Flow-Through SERS , 2014, Chemistry of materials : a publication of the American Chemical Society.

[124]  R. Kurita,et al.  Electrochemical surface plasmon resonance measurement based on gold nanohole array fabricated by nanoimprinting technique. , 2012, Analytical chemistry.

[125]  Jiao Lin,et al.  Continuously Tunable, Polarization Controlled, Colour Palette Produced from Nanoscale Plasmonic Pixels , 2016, Scientific Reports.

[126]  Bozena Kaminska,et al.  Nano-hole array structure with improved surface plasmon energy matching characteristics , 2012 .

[127]  K. R. Williams,et al.  Etch rates for micromachining processing-Part II , 2003 .

[128]  D. Sinton,et al.  On-chip surface-based detection with nanohole arrays. , 2007, Analytical chemistry.

[129]  Xiaodong Yang,et al.  Structural color printing based on plasmonic metasurfaces of perfect light absorption , 2015, Scientific Reports.

[130]  Jean-Francois Masson,et al.  Surface Plasmon Resonance Clinical Biosensors for Medical Diagnostics. , 2017, ACS sensors.

[131]  John A. Rogers,et al.  Molded plasmonic crystals for detecting and spatially imaging surface bound species by surface-enhanced Raman scattering , 2009 .

[132]  Carlos Escobedo,et al.  On-chip nanohole array based sensing: a review. , 2013, Lab on a chip.

[133]  B. Ju,et al.  Photo‐Insensitive Amorphous Oxide Thin‐Film Transistor Integrated with a Plasmonic Filter for Transparent Electronics , 2014 .

[134]  K. Catchpole,et al.  Plasmonic solar cells. , 2008, Optics express.

[135]  Zongfu Yu,et al.  Limit of nanophotonic light-trapping in solar cells , 2010, 2010 35th IEEE Photovoltaic Specialists Conference.

[136]  Barbara Baird,et al.  Visualization of plasma membrane compartmentalization with patterned lipid bilayers. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[137]  Ming-Chang M. Lee,et al.  Enhancing angular sensitivity of plasmonic nanostructures using mode transition in hexagonal gold nanohole arrays , 2017 .

[138]  L. Wong,et al.  Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing. , 2011, Nano letters.

[139]  Jeho Park,et al.  Surface Plasmon Resonance: A Versatile Technique for Biosensor Applications , 2015, Sensors.

[140]  Ke Cheng,et al.  Sensitivity improved plasmonic gold nanoholes array biosensor by coupling quantum-dots for the detection of specific biomolecular interactions. , 2013, Biosensors & bioelectronics.

[141]  H. Lezec,et al.  Extraordinary optical transmission through sub-wavelength hole arrays , 1998, Nature.

[142]  J. Homola Surface plasmon resonance sensors for detection of chemical and biological species. , 2008, Chemical reviews.

[143]  R. Horváth,et al.  Label-free optical monitoring of surface adhesion of extracellular vesicles by grating coupled interferometry , 2013 .

[144]  Konstantins Jefimovs,et al.  Investigation of plasmon resonances in metal films with nanohole arrays for biosensing applications. , 2011, Small.