Fuzzy soft subspace clustering method for gene co-expression network analysis

AbstractGene expression clustering methods for building gene co-expression networks suffer greatly from the biological complexity of cells. This paper proposes a fuzzy soft subspace clustering method for detecting overlapped clusters of locally co-expressed genes that may participate in multiple cellular processes and take on different biological functions. Process-specific cluster subspaces and interactions among different gene clusters can be extracted by this method, providing useful information for gene co-expression networks analysis. Experiments on the yeast cell cycle benchmark microarray data have shown that this method is effective in extracting underlying biological relationships between genes, and enhancing gene co-expression network inference.

[1]  Michael Lees,et al.  BacGrid: simulations of bacteria using the grid , 2007, BMC Systems Biology.

[2]  J. Friedman Clustering objects on subsets of attributes , 2002 .

[3]  J. Carroll,et al.  Synthesized clustering: A method for amalgamating alternative clustering bases with differential weighting of variables , 1984 .

[4]  E. Davidson,et al.  The hardwiring of development: organization and function of genomic regulatory systems. , 1997, Development.

[5]  Huan Liu,et al.  Subspace clustering for high dimensional data: a review , 2004, SKDD.

[6]  Isabelle Tellier,et al.  SSC: statistical subspace clustering , 2005, EGC.

[7]  G. Church,et al.  Correlation between transcriptome and interactome mapping data from Saccharomyces cerevisiae , 2001, Nature Genetics.

[8]  Patrik D'haeseleer,et al.  Genetic network inference: from co-expression clustering to reverse engineering , 2000, Bioinform..

[9]  Philip S. Yu,et al.  /spl delta/-clusters: capturing subspace correlation in a large data set , 2002, Proceedings 18th International Conference on Data Engineering.

[10]  George M Church,et al.  A network of transcriptionally coordinated functional modules in Saccharomyces cerevisiae. , 2005, Genome research.

[11]  Yunming Ye,et al.  Fuzzy K-Means with Variable Weighting in High Dimensional Data Analysis , 2008, 2008 The Ninth International Conference on Web-Age Information Management.

[12]  S. Horvath,et al.  Statistical Applications in Genetics and Molecular Biology , 2011 .

[13]  M. Eisen,et al.  Exploring the conditional coregulation of yeast gene expression through fuzzy k-means clustering , 2002, Genome Biology.

[14]  Zhen Ji,et al.  PK-means: A new algorithm for gene clustering , 2008, Comput. Biol. Chem..

[15]  Jun Dong,et al.  Understanding network concepts in modules , 2007, BMC Systems Biology.

[16]  G. Getz,et al.  Coupled two-way clustering analysis of gene microarray data. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[17]  L. Lazzeroni Plaid models for gene expression data , 2000 .

[18]  Sara Nasser,et al.  A Modified Fuzzy K-means Clustering using Expectation Maximization , 2006, 2006 IEEE International Conference on Fuzzy Systems.

[19]  A. Barabasi,et al.  Network biology: understanding the cell's functional organization , 2004, Nature Reviews Genetics.

[20]  Arlindo L. Oliveira,et al.  Biclustering algorithms for biological data analysis: a survey , 2004, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[21]  B. Noble,et al.  On certain integrals of Lipschitz-Hankel type involving products of bessel functions , 1955, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[22]  Michael K. Ng,et al.  Automated variable weighting in k-means type clustering , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[23]  Ronald W. Davis,et al.  A genome-wide transcriptional analysis of the mitotic cell cycle. , 1998, Molecular cell.

[24]  Lothar Thiele,et al.  A systematic comparison and evaluation of biclustering methods for gene expression data , 2006, Bioinform..

[25]  Adrian E. Raftery,et al.  Model-based clustering and data transformations for gene expression data , 2001, Bioinform..

[26]  P. Woolf,et al.  A fuzzy logic approach to analyzing gene expression data. , 2000, Physiological genomics.

[27]  D. Botstein,et al.  Cluster analysis and display of genome-wide expression patterns. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[28]  Shizhong Xu,et al.  Supervised cluster analysis for microarray data based on multivariate Gaussian mixture , 2004, Bioinform..

[29]  George M. Church,et al.  Biclustering of Expression Data , 2000, ISMB.

[30]  G. Rubin,et al.  The Role of the Genome Project in Determining Gene Function: Insights from Model Organisms , 1996, Cell.

[31]  Michael K. Ng,et al.  An Entropy Weighting k-Means Algorithm for Subspace Clustering of High-Dimensional Sparse Data , 2007, IEEE Transactions on Knowledge and Data Engineering.

[32]  Mohammed Yeasin,et al.  Fuzzy-Adaptive-Subspace-Iteration-Based Two-Way Clustering of Microarray Data , 2009, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[33]  Eric Mjolsness,et al.  From Coexpression to Coregulation: An Approach to Inferring Transcriptional Regulation among Gene Classes from Large-Scale Expression Data , 1999, NIPS.

[34]  Doulaye Dembélé,et al.  Fuzzy C-means Method for Clustering Microarray Data , 2003, Bioinform..

[35]  Philip S. Yu,et al.  A fast algorithm for subspace clustering by pattern similarity , 2004, Proceedings. 16th International Conference on Scientific and Statistical Database Management, 2004..

[36]  Jun Dong,et al.  Geometric Interpretation of Gene Coexpression Network Analysis , 2008, PLoS Comput. Biol..

[37]  James C. Bezdek,et al.  Clustering with a genetically optimized approach , 1999, IEEE Trans. Evol. Comput..

[38]  I. Dhillon,et al.  Coclustering of Human Cancer Microarrays Using Minimum Sum-Squared Residue Coclustering , 2008, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[39]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[40]  Hans-Peter Kriegel,et al.  Density-Connected Subspace Clustering for High-Dimensional Data , 2004, SDM.

[41]  J. Friedman,et al.  Clustering objects on subsets of attributes (with discussion) , 2004 .