Optimal control problems for distributed parameter systems in Banach spaces

We consider the infinite-dimensional nonlinear programming problem of minimizing a real-valued functionf0(u) defined in a metric spaceV subject to the constraintf(u) ε Y, wheref(u) is defined inV and takes values in a Banach spaceE and Y is a subset ofE. We derive and use a theorem of Kuhn-Tucker type to obtain Pontryagin's maximum principle for certain semilinear parabolic distributed parameter systems. The results apply to systems described by nonlinear heat equations and reaction-diffusion equations inL1 andL∞ spaces.

[1]  E. Hille Functional Analysis And Semi-Groups , 1948 .

[2]  I. P. Natanson,et al.  Theory of Functions of a Real Variable , 1955 .

[3]  H. O. Fattorini,et al.  The time-optimal control problem in Banach spaces , 1974 .

[4]  I. Ekeland Nonconvex minimization problems , 1979 .

[5]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[6]  Jay S. Treiman Characterization of Clarke's tangent and normal cones in finite and infinite dimensions , 1983 .

[7]  Adalbert Kerber,et al.  The Cauchy Problem , 1984 .

[8]  J. Aubin,et al.  Applied Nonlinear Analysis , 1984 .

[9]  H. Fattorini The maximum principle for nonlinear nonconvex systems in infinite dimensional spaces , 1985 .

[10]  H. O. Fattorini Optimal control of nonlinear systems: Convergence of suboptimal controls, II , 1987 .

[11]  H. O. Fattorini,et al.  A unified theory of necessary conditions for nonlinear nonconvex control systems , 1987 .

[12]  Daniel B. Henry Geometric Theory of Semilinear Parabolic Equations , 1989 .

[13]  H. Frankowska Some inverse mapping theorems , 1990 .

[14]  Xiaohong S. Li,et al.  Necessary conditions of optimal control for distributed parameter systems , 1991 .

[15]  H. Fattorini Relaxed controls in infinite dimensional systems , 1991 .

[16]  H. Fattorini Optimal control problems for distributed parameter systems governed by semilinear parabolic equations in l1 and l∞ spaces , 1991 .

[17]  Necessary conditions for infinite-dimensional control problems , 1988, Math. Control. Signals Syst..

[18]  Sri Sritharan,et al.  Necessary and sufficient conditions for optimal controls in viscous flow problems , 1994, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[19]  H. O. Fattorini Relaxation Theorems, Differential Inclusions, and Filippov′s Theorem for Relaxed Controls in Semilinear Infinite Dimensional Systems , 1994 .