A protein of capillary endothelial cells, GPIHBP1, is crucial for plasma triglyceride metabolism

Significance The lipolytic processing of triglyceride-rich lipoproteins by lipoprotein lipase (LPL) is crucial for delivering dietary lipids to tissues. For years, the mechanism by which LPL (which is secreted by myocytes and adipocytes) reaches its site of action within blood vessels was mysterious. We discovered that GPIHBP1, a protein of capillary endothelial cells, captures LPL within the interstitial spaces and shuttles it to the luminal surface of capillaries. GPIHBP1’s three-fingered LU (Ly6/uPAR) domain binds stably to LPL’s C-terminal domain. An intrinsically disordered acidic domain in GPIHBP1 accelerates the kinetics of LPL binding, stabilizes the conformational integrity of LPL’s N-terminal hydrolase domain (thereby preserving LPL activity), and plays a critical role in the transport of LPL to the capillary lumen.

[1]  S. Young,et al.  Electrostatic sheathing of lipoprotein lipase is essential for its movement across capillary endothelial cells , 2022, The Journal of clinical investigation.

[2]  M. Ploug,et al.  Expression and one-step purification of active lipoprotein lipase contemplated by biophysical considerations. , 2021, Journal of lipid research.

[3]  S. Young,et al.  GPIHBP1 and ANGPTL4 Utilize Protein Disorder to Orchestrate Order in Plasma Triglyceride Metabolism and Regulate Compartmentalization of LPL Activity , 2021, Frontiers in Cell and Developmental Biology.

[4]  Y. Qian,et al.  ApoA5 lowers triglyceride levels via suppression of ANGPTL3/8-mediated LPL inhibition , 2021, Journal of lipid research.

[5]  S. Young,et al.  The intrinsic instability of the hydrolase domain of lipoprotein lipase facilitates its inactivation by ANGPTL4-catalyzed unfolding , 2021, Proceedings of the National Academy of Sciences.

[6]  J. Lima,et al.  A novel GPIHBP1 mutation related to familial chylomicronemia syndrome: A series of cases. , 2021, Atherosclerosis.

[7]  M. Ploug,et al.  Expression and one-step puri fi cation of active LPL contemplated by biophysical considerations , 2021 .

[8]  S. Young,et al.  Chylomicronemia from GPIHBP1 autoantibodies , 2020, Journal of Lipid Research.

[9]  S. Young,et al.  Chylomicronemia From GPIHBP1 Autoantibodies Successfully Treated With Rituximab: A Case Report , 2020, Annals of Internal Medicine.

[10]  J. Luz,et al.  The structural basis for monoclonal antibody 5D2 binding to the tryptophan-rich loop of lipoprotein lipase , 2020, Journal of Lipid Research.

[11]  M. Borgnia,et al.  The structure of helical lipoprotein lipase reveals an unexpected twist in lipase storage , 2020, Proceedings of the National Academy of Sciences.

[12]  S. Young,et al.  ANGPTL4 inactivates lipoprotein lipase by catalyzing the irreversible unfolding of LPL’s hydrolase domain , 2020, Journal of Lipid Research.

[13]  S. Young,et al.  GPIHBP1, a partner protein for lipoprotein lipase, is expressed only in capillary endothelial cells , 2020, Journal of Lipid Research.

[14]  S. Young,et al.  Unfolding of monomeric lipoprotein lipase by ANGPTL4: Insight into the regulation of plasma triglyceride metabolism , 2020, Proceedings of the National Academy of Sciences.

[15]  R. Hegele,et al.  Intermittent chylomicronemia caused by intermittent GPIHBP1 autoantibodies. , 2020, Journal of clinical lipidology.

[16]  S. Young,et al.  GPIHBP1 and Lipoprotein Lipase, Partners in Plasma Triglyceride Metabolism. , 2019, Cell metabolism.

[17]  Jie Zheng,et al.  Recommendations for performing, interpreting and reporting hydrogen deuterium exchange mass spectrometry (HDX-MS) experiments , 2019, Nature Methods.

[18]  S. Young,et al.  Evolution and Medical Significance of LU Domain−Containing Proteins , 2019, International journal of molecular sciences.

[19]  L. Liau,et al.  GPIHBP1 expression in gliomas promotes utilization of lipoprotein-derived nutrients , 2019, eLife.

[20]  Thomas M. Smith,et al.  Structure of lipoprotein lipase in complex with GPIHBP1 , 2019, Proceedings of the National Academy of Sciences.

[21]  R. Eckel,et al.  The Chylomicronemia Syndrome Is Most Often Multifactorial , 2019, Annals of Internal Medicine.

[22]  S. Young,et al.  Lipoprotein lipase is active as a monomer , 2019, Proceedings of the National Academy of Sciences.

[23]  R. Hegele,et al.  GPIHBP1 autoantibody syndrome during interferon β1a treatment. , 2019, Journal of clinical lipidology.

[24]  D. Cusanovich,et al.  An upstream enhancer regulates Gpihbp1 expression in a tissue-specific manner[S] , 2018, Journal of Lipid Research.

[25]  S. Young,et al.  Structure of the lipoprotein lipase–GPIHBP1 complex that mediates plasma triglyceride hydrolysis , 2018, Proceedings of the National Academy of Sciences.

[26]  S. Young,et al.  A disordered acidic domain in GPIHBP1 harboring a sulfated tyrosine regulates lipoprotein lipase , 2018, Proceedings of the National Academy of Sciences.

[27]  S. Young,et al.  NanoSIMS Analysis of Intravascular Lipolysis and Lipid Movement across Capillaries and into Cardiomyocytes. , 2018, Cell metabolism.

[28]  J. Verschuuren,et al.  IgG4‐mediated autoimmune diseases: a niche of antibody‐mediated disorders , 2018, Annals of the New York Academy of Sciences.

[29]  B. Raney,et al.  Lipoprotein lipase reaches the capillary lumen in chickens despite an apparent absence of GPIHBP1. , 2017, JCI insight.

[30]  P. D. de Jong,et al.  Mutating a conserved cysteine in GPIHBP1 reduces amounts of GPIHBP1 in capillaries and abolishes LPL binding[S] , 2017, Journal of Lipid Research.

[31]  S. Young,et al.  Autoantibodies against GPIHBP1 as a Cause of Hypertriglyceridemia , 2017, The New England journal of medicine.

[32]  S. Young,et al.  Monoclonal antibodies that bind to the Ly6 domain of GPIHBP1 abolish the binding of LPL[S] , 2016, Journal of Lipid Research.

[33]  S. Young,et al.  The angiopoietin-like protein ANGPTL4 catalyzes unfolding of the hydrolase domain in lipoprotein lipase and the endothelial membrane protein GPIHBP1 counteracts this unfolding , 2016, eLife.

[34]  S. Young,et al.  An LPL–specific monoclonal antibody, 88B8, that abolishes the binding of LPL to GPIHBP1[S] , 2016, Journal of Lipid Research.

[35]  B. Motta,et al.  Identification and characterization of two novel mutations in the LPL gene causing type I hyperlipoproteinemia. , 2016, Journal of clinical lipidology.

[36]  S. Young,et al.  The acidic domain of the endothelial membrane protein GPIHBP1 stabilizes lipoprotein lipase activity by preventing unfolding of its catalytic domain , 2016, eLife.

[37]  S. Young,et al.  GPIHBP1 Missense Mutations Often Cause Multimerization of GPIHBP1 and Thereby Prevent Lipoprotein Lipase Binding , 2015, Circulation research.

[38]  S. Young,et al.  Multimerization of Glycosylphosphatidylinositol-anchored High Density Lipoprotein-binding Protein 1 (GPIHBP1) and Familial Chylomicronemia from a Serine-to-Cysteine Substitution in GPIHBP1 Ly6 Domain* , 2014, The Journal of Biological Chemistry.

[39]  S. Young,et al.  The GPIHBP1-LPL complex is responsible for the margination of triglyceride-rich lipoproteins in capillaries. , 2014, Cell metabolism.

[40]  S. Young,et al.  Assessing mechanisms of GPIHBP1 and lipoprotein lipase movement across endothelial cells[S] , 2012, Journal of Lipid Research.

[41]  S. Young,et al.  Reciprocal Metabolic Perturbations in the Adipose Tissue and Liver of GPIHBP1-Deficient Mice , 2012, Arteriosclerosis, thrombosis, and vascular biology.

[42]  Jonathan C. Cohen,et al.  Deletion of GPIHBP1 causing severe chylomicronemia , 2011, Journal of Inherited Metabolic Disease.

[43]  E. Lefai,et al.  GPIHBP1 C89F neomutation and hydrophobic C-terminal domain G175R mutation in two pedigrees with severe hyperchylomicronemia. , 2011, The Journal of clinical endocrinology and metabolism.

[44]  S. Young,et al.  Mutations in lipoprotein lipase that block binding to the endothelial cell transporter GPIHBP1 , 2011, Proceedings of the National Academy of Sciences.

[45]  S. Young,et al.  Assessing the Role of the Glycosylphosphatidylinositol-anchored High Density Lipoprotein-binding Protein 1 (GPIHBP1) Three-finger Domain in Binding Lipoprotein Lipase* , 2011, The Journal of Biological Chemistry.

[46]  S. Young,et al.  Binding Preferences for GPIHBP1, a Glycosylphosphatidylinositol-Anchored Protein of Capillary Endothelial Cells , 2010, Arteriosclerosis, thrombosis, and vascular biology.

[47]  S. Young,et al.  Cholesterol Intake Modulates Plasma Triglyceride Levels in Glycosylphosphatidylinositol HDL-Binding Protein 1-Deficient Mice , 2010, Arteriosclerosis, thrombosis, and vascular biology.

[48]  Sung-Cheng Huang,et al.  Unexpected Expression Pattern for Glycosylphosphatidylinositol-anchored HDL-binding Protein 1 (GPIHBP1) in Mouse Tissues Revealed by Positron Emission Tomography Scanning* , 2010, The Journal of Biological Chemistry.

[49]  S. Young,et al.  GPIHBP1 is responsible for the entry of lipoprotein lipase into capillaries. , 2010, Cell metabolism.

[50]  Li Li,et al.  A mouse knockout library for secreted and transmembrane proteins , 2010, Nature Biotechnology.

[51]  N. Ehrhardt,et al.  Lipase maturation factor 1: structure and role in lipase folding and assembly , 2010, Current opinion in lipidology.

[52]  M. Hayden,et al.  Mutation of conserved cysteines in the Ly6 domain of GPIHBP1 in familial chylomicronemia , 2010, Journal of Lipid Research.

[53]  S. Young,et al.  Chylomicronemia With Low Postheparin Lipoprotein Lipase Levels in the Setting of GPIHBP1 Defects , 2010, Circulation. Cardiovascular genetics.

[54]  M. Péterfy,et al.  Mechanisms of lipase maturation , 2010, Clinical lipidology.

[55]  S. Young,et al.  Highly Conserved Cysteines within the Ly6 Domain of GPIHBP1 Are Crucial for the Binding of Lipoprotein Lipase* , 2009, The Journal of Biological Chemistry.

[56]  S. Young,et al.  Chylomicronemia With a Mutant GPIHBP1 (Q115P) That Cannot Bind Lipoprotein Lipase , 2009, Arteriosclerosis, thrombosis, and vascular biology.

[57]  S. Young,et al.  The Acidic Domain of GPIHBP1 Is Important for the Binding of Lipoprotein Lipase and Chylomicrons* , 2008, Journal of Biological Chemistry.

[58]  S. Young,et al.  Normal binding of lipoprotein lipase, chylomicrons, and apo-AV to GPIHBP1 containing a G56R amino acid substitution. , 2007, Biochimica et biophysica acta.

[59]  S. Young,et al.  Glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 plays a critical role in the lipolytic processing of chylomicrons. , 2007, Cell metabolism.

[60]  M. Hayden,et al.  Lipoprotein Lipase S447X: A Naturally Occurring Gain-of-Function Mutation , 2006, Arteriosclerosis, thrombosis, and vascular biology.

[61]  G. Olivecrona,et al.  Calcium Triggers Folding of Lipoprotein Lipase into Active Dimers* , 2005, Journal of Biological Chemistry.

[62]  C. Junien,et al.  Identification of the first Lebanese mutation in the LPL gene and description of a rapid detection method , 2004, Clinical genetics.

[63]  Takashi Suzuki,et al.  Expression Cloning and Characterization of a Novel Glycosylphosphatidylinositol-anchored High Density Lipoprotein-binding Protein, GPI-HBP1* , 2003, The Journal of Biological Chemistry.

[64]  T. Nakajima,et al.  Molecular modeling of the dimeric structure of human lipoprotein lipase and functional studies of the carboxyl-terminal domain. , 2002, European journal of biochemistry.

[65]  R. Sendak,et al.  Identification of the epitope of a monoclonal antibody that inhibits heparin binding of lipoprotein lipase: new evidence for a carboxyl-terminal heparin-binding domain. , 1998, Journal of lipid research.

[66]  M. Hayden,et al.  A novel Glu421Lys substitution in the lipoprotein lipase gene in pregnancy-induced hypertriglyceridemic pancreatitis. , 1998, Clinica chimica acta; international journal of clinical chemistry.

[67]  R. Davis,et al.  A molecular biology-based approach to resolve the subunit orientation of lipoprotein lipase. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[68]  J. Brunzell,et al.  Dimeric lipoprotein lipase is bound to triglyceride-rich plasma lipoproteins. , 1996, Journal of lipid research.

[69]  M. Hayden,et al.  A new mutation destroying disulphide bridging in the C-terminal domain of lipoprotein lipase. , 1996, Biochemical and biophysical research communications.

[70]  J. Esko,et al.  Synthesis and secretion of lipoprotein lipase in heparan sulfate-deficient Chinese hamster ovary cells. , 1996, Israel journal of medical sciences.

[71]  R. Zechner,et al.  Severe hypertriglyceridemia, reduced high density lipoprotein, and neonatal death in lipoprotein lipase knockout mice. Mild hypertriglyceridemia with impaired very low density lipoprotein clearance in heterozygotes. , 1995, The Journal of clinical investigation.

[72]  D. C. Henckel,et al.  Case report. , 1995, Journal.

[73]  M. Hayden,et al.  Mutagenesis in four candidate heparin binding regions (residues 279-282, 291-304, 390-393, and 439-448) and identification of residues affecting heparin binding of human lipoprotein lipase. , 1994, Journal of lipid research.

[74]  H. Lodish,et al.  Expression cloning of SR-BI, a CD36-related class B scavenger receptor. , 1994, The Journal of biological chemistry.

[75]  R. Davis,et al.  Lipoprotein lipase domain function. , 1994, The Journal of biological chemistry.

[76]  J. Lalouel,et al.  Lipoprotein lipase. Molecular model based on the pancreatic lipase x-ray structure: consequences for heparin binding and catalysis. , 1994, The Journal of biological chemistry.

[77]  H. Tilbeurgh,et al.  Structure of the pancreatic lipase–procolipase complex , 1992, Nature.

[78]  T. Olivecrona,et al.  Lipoprotein lipase and hepatic lipase , 1990 .

[79]  F. Winkler,et al.  Structure of human pancreatic lipase , 1990, Nature.

[80]  A. Bensadoun,et al.  Secretion and degradation of lipoprotein lipase in cultured adipocytes. Binding of lipoprotein lipase to membrane heparan sulfate proteoglycans is necessary for degradation. , 1989, The Journal of biological chemistry.

[81]  Y. Furuichi,et al.  Molecular cloning and sequence of a cDNA coding for bovine lipoprotein lipase. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[82]  K. Svenson,et al.  The sequence of cDNA encoding lipoprotein lipase. A member of a lipase gene family. , 1987, The Journal of biological chemistry.

[83]  K. Shimada,et al.  Involvement of cell surface heparin sulfate in the binding of lipoprotein lipase to cultured bovine endothelial cells. , 1981, The Journal of clinical investigation.

[84]  T. Olivecrona,et al.  Apolipoprotein cii enhances hydrolysis of monoglycerides by lipoprotein lipase, but the effect is abolished by fatty acids , 1979, FEBS letters.

[85]  P. Iverius,et al.  Lipoprotein lipase from bovine milk. Isolation procedure, chemical characterization, and molecular weight analysis. , 1976, The Journal of biological chemistry.

[86]  M. Schotz,et al.  Rat heart lipoprotein lipase. , 1975, Atherosclerosis.

[87]  J. Larosa,et al.  A specific apoprotein activator for lipoprotein lipase. , 1970, Biochemical and biophysical research communications.

[88]  C. Fielding Human lipoprotein lipase. I. Purification and substrate specificity. , 1970, Biochimica et biophysica acta.

[89]  R. S. Gordon,et al.  Idiopathic hyperlipemia: metabolic studies in an affected family. , 1960, The Journal of clinical investigation.

[90]  E. Korn Clearing factor, a heparin-activated lipoprotein lipase. II. Substrate specificity and activation of coconut oil. , 1955, The Journal of biological chemistry.

[91]  E. Korn Clearing factor, a heparin-activated lipoprotein lipase. I. Isolation and characterization of the enzyme from normal rat heart. , 1955, The Journal of biological chemistry.