Periodic Solutions of N-Vortex Type Hamiltonian Systems near the Domain Boundary

The paper deals with the existence of nonstationary collision-free periodic solutions of singular first order Hamiltonian systems of $N$-vortex type in a domain $\Omega\subset\mathbb R^2$. These are solutions $z(t)=(z_1(t),\dots,z_N(t)) \in \Omega^N$ of $\dot{z}_j(t)=J\nabla_{z_j} H(z(t)), j=1,\dots,N$, where the Hamiltonian $H$ has the form $H(z_1,\dots,z_N) = -\sum_{j,k=1, j\ne k}^N \frac{1}{2\pi}\log|z_j-z_k| -\sum_{j,k=1}^N g(z_j,z_k).$ Here $J = (\begin{smallmatrix} 0 & 1 \\ -1 & 0 \end{smallmatrix})$ is the standard symplectic matrix in $\mathbb{R}^2$. The function $g:\Omega\times\Omega \to\mathbb{R}$ is required to be of class $\mathcal C^3$ and symmetric, the regular part of the Dirichlet Green's function being our model. The Hamiltonian is unbounded from above and below, and the associated action integral is not defined on an open subset of the space of periodic $H^{1/2}$ functions. Given a compact connected component $\Gamma\subset\partial\Omega$ of class $\mathcal C^3$ we are interested in peri...

[1]  Darren Crowdy,et al.  The motion of a point vortex through gaps in walls , 2006, Journal of Fluid Mechanics.

[2]  T. Bartsch,et al.  Global continua of periodic solutions of singular first-order Hamiltonian systems of N-vortex type , 2016, 1605.07864.

[3]  A. Pistoia,et al.  Non Degeneracy of Critical Points of the Robin Function with Respect to Deformations of the Domain , 2013, 1303.6530.

[4]  C. Lin,et al.  On the Motion of Vortices in Two Dimensions: II. Some Further Investigations on the Kirchhoff-Routh Function. , 1941, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Alan Weinstein,et al.  Normal modes for nonlinear hamiltonian systems , 1973 .

[6]  Martin Flucher,et al.  Variational Problems with Concentration , 1999 .

[7]  Christian Kuhl Equilibria for the $N$-vortex-problem in a general bounded domain , 2015, 1502.06225.

[8]  S. Bell Mapping problems in complex analysis and the $\overline \partial$-problem , 1990 .

[9]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[10]  Darren Crowdy,et al.  The motion of a point vortex around multiple circular islands , 2005 .

[11]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[12]  Robert L. Jerrard,et al.  Vortex dynamics for the Ginzburg-Landau-Schrodinger equation , 1997 .

[13]  Mario Pulvirenti,et al.  Mathematical Theory of Incompressible Nonviscous Fluids , 1993 .

[14]  Matthias Kurzke,et al.  Ginzburg–Landau Vortices Driven by the Landau–Lifshitz–Gilbert Equation , 2011 .

[15]  Thomas Bartsch,et al.  Periodic solutions of singular first-order Hamiltonian systems of N-vortex type , 2016 .

[16]  E. J. Routh Some Applications of Conjugate Functions , 1880 .

[17]  K. Koshel,et al.  Steady and perturbed motion of a point vortex along a boundary with a circular cavity , 2016 .

[18]  T. Bartsch,et al.  Periodic solutions with prescribed minimal period of vortex type problems in domains , 2016, 1608.06775.

[19]  J. Koenderink Q… , 2014, Les noms officiels des communes de Wallonie, de Bruxelles-Capitale et de la communaute germanophone.

[20]  T. Bartsch A generalization of the Weinstein-Moser theorems on periodic orbits of a hamiltonian system near an equilibrium , 1997 .

[21]  A. Friedman,et al.  Convexity of solutions of semilinear elliptic equations , 1985 .

[22]  T. Bartsch,et al.  N-Vortex Equilibria for Ideal Fluids in Bounded Planar Domains and New Nodal Solutions of the sinh-Poisson and the Lane-Emden-Fowler Equations , 2010 .

[23]  C. Lin,et al.  On the Motion of Vortices in Two Dimensions: I. Existence of the Kirchhoff-Routh Function. , 1941, Proceedings of the National Academy of Sciences of the United States of America.

[24]  Christian Kuhl Symmetric equilibria for the N-vortex problem , 2015 .

[25]  M. Pino,et al.  Singular limits in Liouville-type equations , 2005 .

[26]  Andrew J. Majda,et al.  Vorticity and Incompressible Flow: Index , 2001 .

[27]  P. Newton The N-Vortex Problem , 2001 .

[28]  Catherine Bandle,et al.  Harmonic Radius and Concentration of Energy; Hyperbolic Radius and Liouville's Equations Δ U = eU and Δ U = Un+2/n-2 , 1996, SIAM Rev..